### Approaches to N Recommendations in the North Central Region

Carrie Laboski – Soil Science Larry Bundy & Todd Andraski – Soil Science Scott Sturgul – NPM Program



#### N Recommendations

- Two prevailing theories
  - > Yield goal based
  - ► Non-yield goal based

#### N Recommendations

- Yield goal based
  - > Illinois
    - Ib N/A =  $(1.2 \times YG)$  N credits; soybean credit = 40 lb/A
  - Michigan/Indiana/Ohio
    - Ib N/A = (1.36 x YG) 27 N credits; soybean credit = 30 lb/A

#### Minnesota

|         |          | Expected Yield (bu/A) |         |         |         |      |  |
|---------|----------|-----------------------|---------|---------|---------|------|--|
| PC      | OM*      | 100-124               | 125-149 | 150-174 | 175-199 | 200+ |  |
|         |          | N to apply (lb N/A)   |         |         |         |      |  |
| Corn    | Low      | 130                   | 160     | 190     | 210     | 230  |  |
| Corn    | Med/High | 100                   | 130     | 160     | 180     | 200  |  |
| Soybean | Low      | 90                    | 120     | 150     | 170     | 190  |  |
| Soybean | Med/High | 60                    | 90      | 120     | 140     | 160  |  |

<sup>\*</sup> Low OM < 3.0%; Med/High OM ≥ 3.0%

#### N Recommendations

#### Not yield goal based

> Iowa

| P <i>C</i> | N rec. (lb N/A) |  |  |
|------------|-----------------|--|--|
| Corn       | 150 to 200      |  |  |
| Soybean    | 100 to 150      |  |  |

#### Wisconsin

|       | Sands/loamy sands |               | Other soils |                   |  |
|-------|-------------------|---------------|-------------|-------------------|--|
| OM    | Irrigated         | Non-irrigated | Low/Med YP  | High/Very High YP |  |
| %     |                   |               | - lb N/A    |                   |  |
| < 2   | 200               | 120           | 150         | 180               |  |
| 2-9.9 | 160               | 110           | 120         | 160               |  |
| 10-20 | 120               | 100           | 90          | 120               |  |
| > 20  | 80                | 80            | 80          | 80                |  |

(soybean credit = 40 lb N/A)

#### N Recommendation Comparison

| Previous Crop:     | Co      | orn     | Soybean |     |  |
|--------------------|---------|---------|---------|-----|--|
| Yield Goal (bu/A): | 150     | 150 200 |         | 200 |  |
|                    | lb N/A  |         |         |     |  |
| IL                 | 180     | 240     | 140     | 200 |  |
| MI/IN/OH           | 177     | 245     | 147     | 215 |  |
| MN                 | 160     | 200     | 120     | 160 |  |
| IA                 | 150-200 |         | 100-150 |     |  |
| WI                 | 160     |         | 120     |     |  |

Soil with 3.1% OM, considered high yield potential

#### Are Yield Goal Based N Recommendations Valid?

If so, there will be a relationship between economic optimum N rate (EONR) and yield obtained at EONR

### Relationship between optimum N rate and corn yield (101 WI sites; 1989-1999)



# Relationship between optimum N rate and yield in IA (81 site years; pc = soybean)



# Relationship between optimum N rate and yield in IL (72 site years; pc = soybean)



# Relationship between optimum N rate and yield in MI (14 site years; 2002-2003)



## Relationship between optimum N rate and yield in MN

Data across southern and south east MN show a poor/no relationship between yield and economic optimum N rate

#### Are Yield Goal Based N Recommendations Valid?

- If so, there will be a relationship between economic optimum N rate (EONR) and yield obtained at EONR
  - > Relationship is poor
- If so, the pounds of N required per bushel would be relatively stable over time/across sites

# N required per bushel in MI (2002-2003)



### N required per bushel in WI with and without 40 lb N credit added to EONR



#### Are Yield Goal Based N Recommendations Valid?

- If so, there will be a relationship between economic optimum N rate (EONR) and yield obtained at EONR
  - Relationship is poor
- If so, the pounds of N required per bushel would be relatively stable over time/across sites
  - ► N required per bushel is:
    - Highly variable
    - Much less than 1.2

### Let's look at factors in Wisconsin's N recommendations

- Yield potential
  - > Based on:
    - Drainage
    - Depth of root zone
    - Water holding capacity
    - Length of growing season
- Soil organic matter

#### How much N does soil supply?

## Contribution of soil N and fertilizer N to yield in WI



### Contribution of soil N and fertilizer N to yield in MI (2002-2003)



#### How much N does soil supply?

- A majority of N needed is supplied by the soil
  - ► WI: Soil N contributed 79% of total yield
    - 53 sites, 1991-2003, v. high/high YP sites
    - PC = corn and soybean
  - MI: Soil N contributed 74% of total yield
    - **14** sites, 2002-2003
    - PC = corn, wheat, soybean, dry bean, alfalfa
  - > Varies with temperature and moisture
  - > Acts as a buffer for climate variability

### Stability of EONR over time

### Optimum N rates for corn in high- & low-yielding years (1967-90), Lancaster, WI



Economic optimum N rates calculated at corn: N price ratio of 13.3:1 (eg. \$2.00:\$0.15)

#### Annual average EONR for corn in WI



# Comparison of corn yield response to N recommendations based on yield goal and soil-specific N response approaches, Arlington, WI



# Profitability of Wisconsin's N recommendation system

### Net economic return from fertilizer N for corn production on several WI soils

|            |         | Yield         | Net economic return from fertilizer** |        |        |        |
|------------|---------|---------------|---------------------------------------|--------|--------|--------|
|            |         | increase from | Corn:N price ratios                   |        |        |        |
| Soil       | N rate  | fertilizer N  | 8.33:1                                | 10.0:1 | 13.3:1 | 16.7:1 |
|            | lb/acre | bu/acre       | \$/acre                               |        |        |        |
| Plano      | 130     | 31.4          | 14.75                                 | 22.60  | 38.30  | 54.00  |
|            | 160*    | 34.7          | 14.38                                 | 23.05  | 40.40  | 57.75  |
|            | 190     | 36.5          | 12.13                                 | 21.25  | 39.50  | 57.75  |
| Withee     | 90      | 24.3          | 11.88                                 | 17.95  | 30.10  | 42.25  |
|            | 120*    | 27.5          | 11.38                                 | 18.25  | 32.00  | 45.75  |
|            | 150     | 28.2          | 7.75                                  | 14.80  | 28.90  | 43.00  |
| Meridian   | 90      | 21.7          | 8.63                                  | 14.05  | 24.90  | 35.75  |
|            | 120*    | 25.2          | 8.50                                  | 14.80  | 27.40  | 40.00  |
|            | 150     | 26.7          | 5.88                                  | 12.55  | 25.90  | 39.25  |
| Plainfield | 170     | 101.8         | 96.75                                 | 122.20 | 173.10 | 224.00 |
|            | 200*    | 106.9         | 98.63                                 | 125.35 | 178.80 | 232.25 |
|            | 230     | 108.1         | 95.63                                 | 122.65 | 176.70 | 230.75 |

<sup>\*</sup> Recommended N rate prior to taking legume/manure N credits

<sup>\*\*</sup> Value of yield increase due to N - cost of N - cost of application (\$5/acre). All calculations were based on \$0.15/lb N and \$1.25, \$1.50, \$2.00, and \$2.50 per bushel corn for 8.33:1, 10:1, 13.3:1, and 16.7:1 ratios, respectively.

#### Conclusions

- There is no relationship between yield goal and optimum N rate
  - Even in states that use yield goal to make N recommendations
  - Yield goal based recommendations do not follow curves of corn yield response to N
    - Results in over or under application of N at high and low yield goals, respectively
- Wisconsin's current method of N recommendations allows for profitability as well as environmental protection

#### So what's next?

- Regional N rate recommendations
- Discussions between WI, MN, IA, IL, IN, OH, MI
  - Pooling data sets to evaluate yield response over range of soils and climates
  - May evaluate probability of N sufficiency for given N rates
    - Producers could determine the level of risk with which they are comfortable and economic outlook