Soil Acidity and Liming

Soil pH

- pH is a measure of soil acidity
- Definition:
 - -Acid soil has excess hydrogen ions (H+) in soil solution
- $pH = 1/(-log[H^+])$
- Agricultural soils = 5 8
- "Ideal" soil = 6.5 7

What is soil pH?

Characteristics of Soil Acidity

- Components:
 - Readily available (H⁺)
 - -Reserve or potential acidity
- pH buffering: ability of the soil to resist pH change; increases with increasing cation exchange capacity (CEC)
 - -Clay content
 - Organic matter content

Figure 6-2. Active and reserve acidity in soil compared with a poultry watering fountain.

Why Soils Become Acid

- Use of acid-forming fertilizers
- Removal of basic cations
 (Mg⁺⁺, Ca⁺⁺, K⁺)
- Respiration by plant roots

Beneficial Effects of Liming

- · Crop yield improvement
- Nutrient availability effects
- Improved microbial activity
- · Improved legume fixation
- * Calcium & magnesium addition

Figure 1. Relationship of soil pH and nutrient availability.

Calculating Lime Requirements

- See equations: p. 24, A2809
- Inputs needed:
 - -Soil pH (active acidity)
 - -Organic matter content
 - -Buffer pH (reserve acidity)

Calculating Lime Requirements

- Target pH
- · Determined by crop rotation
 - -Corn 6.0
 - -Alfalfa 6.8
 - -Oats 5.8
 - -Soybean 6.3

Calculating Lime Requirements

- Target pH 6.8
- 2.0[1.64(6.8-pH)(OM-0.07)-0.046(SMP)]

What determines the quality of a liming material

- Purity
 - -Calcium carbonate (CaCO₃) equivalent (CCE)
- Fineness
- N.I.= Neutralizing index e.g., N.I. = 60-69

The purity factor (CaCO₃) Equivalent

Table 6-5. Liming materials and their calcium carbonate (CaCO₃) equivalent

Liming material	Neutralizing agent	CaCO ₃ equivalent of pure material (%		
Dolomitic limestone	CaCO ₃ •MgCO ₃	110–118		
Papermill lime sludge	Mainly CaCO ₃			
Marl	Mainly CaCO ₃	variable		
Calcitic limestone	CaCO ₃	100-		
Water treatment lime waste	CaCO ₃	variable		
Wood ash	K ₂ CO ₃ , CaCO ₃ , MgCO ₃	20–90		
Fly ash	CaO, Ca(OH) ₂ , CaCO ₃	variable		
Hydrated lime	Ca(OH) ₂	135		
Air-slaked lime	Ca(OH) ₂ + CaCO ₃	100–135		

^{*} According to the Wisconsin Lime Law, one cubic yard of papermill lime sludge is equivalent to one ton of aglime having a neutralizing index of 60–69.

Lime Effectiveness over a three-year period

Calculating the Neutralizing Index of a liming material

Example 2: Lime B (90% calcium carbonate equivalent)

Screen size	Screen analysis		Effectiveness facto			
	%		10	frie	dely alob	
greater than 8 mesh	5.0	x	0.0	=	0.0	
8 to 20 mesh	25.0	x	0.2	=	5.0	
20 to 60 mesh	20.0	x	0.6	=	12.0	
less than 60 mesh	50.0	x	1.0	-	50.0	
			Total	=	67.0	

 $NI = 67.0 \times 90\% = 60.3$

Lime Requirement Conversions

- Recom. = 4 tons/acre, 60-69 lime
- Convert to requirement as 70-79 lime
- LR $(70-79) = 4 \times 65/75 = 3.47 \text{ tons/acre}$

Table 6-7. Aglime conversion table for different neutralizing index zones

Lime recommendation ^a	40-49	ones of lim 50–59	e quality ac 60–69	cording to 70–79	neutralizin 80–89	g index va 90-99	lues 100-109-
(ton/a)	ton/a lime to apply						ales de la company
1	1.4	1.2	1.0	0.9	0.8	0.7	0.6
2	2.9	2.4	2.0	1.7	1.5	1.4	1.2
3 million in the desped	4.3	3.5	3.0	2.6	2.3	2.1	1.9
4	5.8	4.7	4.0	3.5	3.1	2.7	2.5
5 Transaction at American	7.2	5.9	5.0	4.3	3.8	3.4	3.1
6	8.7	7.1	6.0	5.2	4.6	4.1	3.7
7	10.1	8.3	7.0	6.1	5.4	4.8	4.3
8 minimum and and a	11.6	9.5	8.0	6.9	6.1	5.5	5.0
9	13.0	10.6	9.0	7.8	6.9	6.2	5.6
10	14.4	11.8	10.0	8.7	7.6	6.8	6.2

^a Soil test recommendations are made for lime having a neutralizing index zone of 60–69. To convert a recommendation to a liming material with a different grade, read across the table to the appropriate column.

Depth of tillage affects the lime requirement of soils

Tillage depth (inches)	Factor used to adjust lime recommendations for depth of tillage		
<7.1	1.00		
7.1–8.0	1.15		
8.1–9.0	1.31		
>9.0	1.46		

HOW LIMESTONE WORKS

Particles of Limestone

Areas of acid soil neutralized by Limestone particle