NITROGEN AND NITROGEN MANAGEMENT

NITROGEN (N)

- Atmosphere contains 78% nitrogen gas (N₂)
- Plants cannot use this N directly
- Nitrogen from air must be converted for plant use
 - Biological fixation (Rhizobia and legumes)
 - —Chemical fixation (fertilizers)

NITROGEN (N)

- Nutrient that most often limits yield of non-legumes.
- Role of N in plants
 - -Component of amino acids
 - -Amino acids → proteins

Amino Acids

Alanine

NITROGEN (N)

Nitrogen is mobile in plants.

 Deficiency symptoms on older leaves.

Soil Organic Matter

- Most Wisconsin soils = 1-5%
- Organic soils = 20-50+ %
- About 2-3% of OM decomposes annually

Carbon: Nitrogen Ratios of Organic Materials

Material	C:NRatio
Soil microorganisms	8
Soil organic matter	10
Alfalfa	12
Rotted manure	20
Corn residue	60
Grain straw	80
Sawdust	300

Carbon: Nitrogen ratio effects on Nitrogen r

Expected N Effect

C: N range

Release N

< 20

Depends on Composition

20 - 50

Immobilize (Tie up) N

> 50

Yield, Economic Return, & N Recovery in Corn Grain, Janesville, Wl. 83-85

Prices: \$0.15/lb N , \$2.00/bu com

As N rates are increased to the economic optimum:

- Economic return increases
- Crop recovery of N decreases
- Potential for N loss increases

GOALS OF NITROGEN MANAGEMENT

- Maximize economic return with optimum N rates
- Avoid environmental risks due to above-optimum N use

ENVIRONMENTAL ISSUES

- Nitrate leaching
 - Nitrate in ground water
 - Nitrate in tile drain outflow
- Nitrate contributions to Gulf of Mexico hypoxia

Sources of nitrogen fertilizer

Name of	Chemical	Fertilizer analysis (%)	% of N	
fertilizer	formula	$N-P_2O_5-K_2O$	NH ₄ +	NO ₃ -
Anhydrous ammonia	NH ₃	82-0-0	100	0
UAN solutions	NH ₄ NO ₃ + urea + H ₂ O	28-0-0	75	25
Urea	NH ₂ • CO•NH ₂	45-0-0	100	0
Ammonium nitrate	NH ₄ NO ₃	33-0-0	50	50
Ammonium sulfate	(NH ₄) ₂ SO ₄	21-0-0	100	0

Sources of nitrogen fertilizer

Name of fertilizer	Physical form	Method of application
Anhydrous ammonia	High-pressure liquid	Injected 6 to 8 inches deep
UAN solutions	Pressureless liquid	Spray on surface or inject
Urea	Dry pellets	Broadcast or sidedress
Ammonium nitrate	Dry pellets	Broadcast or sidedress
Ammonium sulfate	Dry granules	Broadcast or sidedress

Nitrogen Sources-Are There Differences?

- Equally effective if losses are minimized
- Different susceptibility to loss processes
 - Leaching
 - Denitrification
 - Ammonia volatilization

Ammonia Volatilization

Ammonia Volatilization Losses

- Urea and urea-containing fertilizers
- Surface applications only
- Tillage or rain in 2-3 days controls loss
- Large losses are rare
- Maximum loss = 20-30 % of N

NITROGEN RECOMMENDATIONS

Optimum N Rate for Corn

- Soil-specific characteristic
- Not affected by annual variations in yield
- Year-specific adjustments for soil nitrate and organic N inputs needed

Nitrogen Recommendations for Corn

	Sands & loamy sand		Other soils		
			Yield Potential		
Organic		Non-		Very high/	
matter	Irrigated	irrigated	Med/low	high	
%	lb N/acre				
<2	200	120	150	180	
2-9.9	160	110	120	160	
10-20	120	100	90	120	
>20	80	80	80	80	

Adjustments to Base N Rates

- Nitrogen Credits
 - -Legumes
 - -Manure
- Soil nitrate tests
- Tillage/residue adjustment

Nitrogen credits for forage legumes

Based on:

- Crop
- Soil Texture
- Plant density
- Harvest management

Nitrogen Credits for Alfalfa

	Sandy soils		Other soils	
Stand	Regrowth			
density	≤8"	>8"	≤8"	>8"
	lb N/a			
Good (70-100%, >4)	100 plants/sq ft)	140	150	190
Fair (30-69%, 1.5-4	60	110	110	160
Poor (0-29%, <1.5 p	40 plants/sq ft)	80	90	130

NITROGEN CREDITS FOR SOYBEAN

- Credit 40 lb N/acre
- Credit varies over sites and years
- Credit not affected by soybean residue
- Use preplant soil nitrate test to fine-tune credit
- No credit on sands or loamy sands

Why Use Soil Nitrate Tests?

- · Agronomic and environmental benefits
- · Predict corn N needs
 - Improved accuracy
 - Site-and year-specific
- · Minimize nitrate loss

Preplant Soil Nitrate Test (PPNT)

- Collect samples in early spring (preplant)
- Sample 0-1 ft. and 1-2 ft. depths
- Measures residual (carryover) nitrate
- · Adjust Nitrogen recommendations

Pre-Sidedress Soil Nitrate Test (PSNT)

- Sample 0-1 ft when corn is 6-12 in tall
- Estimates N availability from organic N sources
- · Confirms manure & legume N credits
- Direct N recommendation
- · Not useful on sands, loamy sands

