CROP RESPONSE TO SOIL TEST P & K AND STARTER FERTILIZER

Larry Bundy and Todd Andraski

Introduction

- Frequent reports of K deficiency.
- More often seen in no-till.
- Do current soil test K recommendations need modification ?
- Does starter fertilizer containing K prevent deficiencies?

Procedure

- Long-term plots with wide range of soil test K (VL to EH, 60 to 265 ppm).
- Response to NPK starter
 (100/9-23-30) across range of soil test K levels.
- Corn yield responses measured over 4 yr.

Soil test K interpretation for corn (Group B soils)

	Soil test K	Recommend.*
Category	(ppm)	(lb K ₂ O/acre)
V. low (VL)	< 70	100
Low (L)	70-90	90
Optimum (O)	91-110	60
High (H)	111-150	30
Ex. high (EH)	> 150	0

^{* 151-170} bu/acre yield goal.

Procedure

- 1993 to 1996.
- P and K broadcast to some plots (1993 & 1995 – spring disked & chisel plowed) to expand the range of soil test levels.
- No-till in 1994 and 1996.

Soil K response relationship relative to current soil test interpretation ranges at Arlington, 1993 to 1996

Growing season characteristics

Year	PDRM*	F.F. days	GDD
1993	225	154	2055
1994	228	189	2293
1995	227	145	2413
1996	228	170	2043

^{*} Planting dates: Apr. 30 to May 3; RM=105

Relationship between soil test K level and yield response to starter fertilizer at Arlington, 1995

Relationship between soil test K level and yield response to starter fertilizer at Arlington, 1996

Relationship between temperature (GDD and departure – May to September) and maximum soil test K level where yield response to starter fertilizer occurred

Relationship between temperature (GDD and departure – May to September) and maximum soil test K level where yield response occurred

Relationship between soil test K level and soybean grain yield relative to current soil test interpretation ranges at Arlington, 1992

Relationship between Bray P1 and Mehlich III extractable soil P (0-2 cm) for southern silty and eastern clayey soils in Wisconsin.

Summary

- Results support the soil test K & P categories used for current fert. recommendations.
- For corn, little response to increasing soil test K above 110 ppm or above 20 ppm for P.
- Frequency and size of response to starter was influenced by GDD accumulation.
- Response to starter occurred at higher soil test
 K levels in cooler growing seasons

Relationship between soil test K level and yield response to starter fertilizer at Arlington, 1993 to 1996

Relationship between Bray P1 and Mehlich 3 soil tests on Eastern Red Soils in Wisconsin

Procedure- Corn P Response

Results only from plots with soil test K
values > 135 ppm and where no broadcast
P was applied in the study year.

Range of soil test P levels (6 – 64 ppm).

 Max. yield to calculate rel. yield was the average of plots with STP>30.

Soil P response relationship relative to current soil test interpretation ranges at Arlington, 1993 to 1996

Relationship between soil test P level and yield response to starter fertilizer at Arlington, 1996

Relationship between soil test P level and yield response to starter fertilizer at Arlington, 1993 to 1996

