

DICK WOLKOWSKI
EXTENSION SOIL SCIENTIST
UNIVERSITY OF WISCONSIN

SOIL COMPACTION DEFINED

Compression of the soil from an applied force that first re-arranges and then destroys aggregates increasing bulk density and reducing porosity

- Wheel traffic from field operations
- Tillage
- Livestock

Soil compacts when load-bearing strength of soil is less than load being applied.

"COMPACTABILITY" INFLUENCED BY WATER CONTENT

- Varies by soil
- Maximum near field capacity
- Dry soil has more strength
- Saturated soil not as compactable

COMPACTION IS A PROCESS

 $D_{b} = 1.0$

- Large aggregates
- Loose condition
- · Many large pores
- beteres lleW ·
- · Just after tillage

$D_{b} = 1.3$

- Firm condition
- Few large pores
- notieres etereboll.
- Typical silt loam
- Following normal traifie

$D_{\rm b} = 1.6$

- Very tight, compact
- No large pores
- Small pores are water-filled
- etageroga beneuro ·

WHY IS COMPACTION AN ISSUE

- Larger equipment
- Earlier field operations traffic
- Loss of forage in rotation

Brain cramps

Time management

Uncontrolled

Operations on wet soils

WHICH IS WORSE - PRESSURE OR LOAD?

High PSI, but small load Low PSI, but large load

THE GREATER THE LOAD THE DEEPER THE COMPACTION EFFECT

TRACKS vs. TIRES

Compare total load per axle

Track have many axles

I JUST CHOOSE TO IGNORE IT.

SOIL SURVEY

Chasing the combine is an old habit

Greeley County, Kansas

CONTROLLED TRAFFIC FARMING CONCEPTS

- Recognizes random traffic-induced compaction is bad
- Adapts machinery and organizes operations to have trafficked and nontrafficked zones
- Creates permanent "wheelways"
- Utilizes wide-span implements and GPS guidance
- Requires careful planning and

CONTROLLED TRAFFIC FARMING

- Practiced extensively in Europe and Australia
- Modified 3 m width tractor
- GPS guidance
- Preserves soil quality between lanes
- Why not?
 - Variety of operations
 - Equipment cost
 - Field shape

MOST OF THE COMPACTION OCCURS IN THE FIRST PASS

- Plano silt loam
- Soil near field capacity (34 – 38%)
- 2007 NT w. wheat
 2006 NT corn silage
 following alfalfa
- Chisel vs. None
- No traffic or 1, 2, 4,
 and 6 passes with a
 14.5 ton combine
- 6 measurements per treatment

Arlington Evaluation

EFFECT OF NUMBER OF WHEEL TRAFFIC PASSES ON SOIL COMPACTION

Not Plowed

WHEEL TRACK EFFECTS ON PENETRATION RESISTANCE

TRAFFIC EFFECT ON SOIL PROPERTIES AND YIELD

	Canola		Wheat	
Measurement	WT	Non-WT	WT	Non-WT
Bulk density (g/cc)	1.58	1.29	1.50	1.25
Air-filled pores (%)	7	19	9	23
Root density (g/m3 x 1000)	9.2	27.5	75	118
Biomass (Mg/ha)	4.7	11.8	12.0	12.6
Yield (Mg/ha)	1.1	3.2	5.5	5.3
Harvest index	22	27	43	44

Chan et al., 2006

EXAMPLES OF CTF SYSTEMS

Figure 1. ComTrac. A CTF system that uses a single common track width to match the widest vehicle. Implements all have a common span or direct multiple of it.

ADAPTING CTF TO IRREGULAR AND SLOPED FIELDS

COMMON SYMPTOMS OF SOIL COMPACTION

SOIL:

- Standing water
- Excessive runoff
- Structural degradation (clods)
- Difficult to work

PLANTS:

- Stunting/uneven growth
- Nutrient deficiency symptoms
- Malformed roots
- Reduced yield

GROWERS ARE INTERESTED IN COMPACTION MANAGEMENT

QUANTIFYING COMPACTION

- CROP AND SOIL SYMPTOMS
- PENETRATION RESISTANCE
 - Moisture dependent
 - No absolute value
 - Note depth and relative force
 - Compare good and bad areas
- BULK DENSITY
 - Mass per volume
 - Calculate porosity
 - Texture dependent

MEASURING PENETRATION RESISTANCE

Hand-held penetrometer

Soil probe

CONSTANT-RATE RECORDING PENETROMETER

Response of a Plainfield sand to compaction and deep tillage, Hancock, Wis.

EFFECT OF COMPACTION ON SOIL BULK DENSITY OF A PLANO SILT LOAM

DEPTH	COMPACTION	YEAR 1	YEAR 2	YEAR 3		
in						
0-6	NO	1.19	1.30	1.32		
	YES	1.36	1.40	1.40		
6-12	NO	1.31	1.33	1.31		
	YES	1.59	1.50	1.52		
12-18	NO	1.19	1.35	1.33		
	YES	1.45	1.44	1.33		
18 - 24	NO	1.36	1.35	1.34		
	YES	1.40	1.34	1.33		

Compacted in year 1 and seeded to alfalfa

COMPACTION AFFECTS NUTRIENT UPTAKE

Potassium Affected Most

- Compaction reduces porosity
- Lowers soil oxygen
- O₂ needed for root respiration and active uptake

COMPACTION EFFECT ON CORN YIELD ON A SILTY CLAY LOAM SOIL

Oshkosh, Wis.

RESPONSE OF CORN TO ROW-APPLIED K ON A SILTY CLAY LOAM SOIL (3 yr. avg.)

Oshkosh, Wis. (45 lb K₂0/a)

IS COMPACTION A PROBLEM IN FORAGE PRODUCTION

- Compaction limits growth and yield
- Potential high in forage production
 - Fertilizer and lime applications
 - Liquid manure
 - Normal management = many traffic passes
 - Harvest on wet soils
- K/compaction relationship
- Alfalfa has a high K need

EFFECT OF COMPACTION ON ALFALFA YIELD ON A SILT LOAM SOIL

Arlington, Wis.

K SOIL TEST AND ALFALFA YIELD ON A COMPACTED SOIL (sum of 3 yrs.)

Arlington, Wis.

Leave untreated strips for comparison

Subsoiling is not a cure-all

SOIL BULK DENSITY PROFILE, ARLINGTON, WIS., 1998

EFFECT OF TILLAGE AND K FERTILIZATION ON FIRST-YEAR CORN YIELD AFTER SOYBEAN (2 yr. avg.)

Arlington, Wis.

WHICH TYPE OF SUBSOILER

"Conservation"

- Cutting coulters
- Straight shanks
- Horizontal points

"V-Ripper"

- Leading disks
- Parabolic shanks
- Winged points

EFFECT OF SUBSOILER TYPE ON SOYBEAN AND CORN YIELD ON A SILTY CLAY LOAM SOIL

Manitowoc, Wis.

DON'T COUNT ON MOTHER NATURE TO CORRECT COMPACTION WADSWORTH TRAIL, MINNESOTA

■ 10-12 in ■ 8-10 in ■ 6-8 in ■ 4-6 in ■ 2-4 in ■ 0-2 in

Sharratt et al., 1998

Guidelines for managing compaction: 2. Control traffic – Unload on field edge

Guidelines for managing compaction: 2. Control traffic – No shortcuts

Guidelines for managing compaction: 3. Limit load weight – Avoid operations with heavy loads when possible

OTHER KEYS FOR MANAGING SOIL COMPACTION

Evaluate and monitor crops and soil

- Subsoil only if documented compaction conditions exist
- Use common sense
- Address compaction issues
- Factsheet A3367 currently being revised