SOIL EROSION AND PRODUCTIVITY

DICK WOLKOWSKI
DEPARTMENT OF SOIL SCIENCE
UW-MADISON

SOIL EROSION IS GLOBAL PROBLEM

- 1/3 WORLD'S ARABLE LAND LOST SINCE 1950
- **MOST IN ASIA, AFRICA, S. AMERICA**
 - □ 13-18 t/a/yr
- 30% OF US FARMLAND ABANDONED
 - EROSION
 - SALINIZATION
 - **WATER-LOGGING**
- 90% OF US CROPLAND LOSING SOIL FASTER THAN IT IS REPLACED
 - □ >1 t/a/yr

PIMENTEL ET AL., 1995

SOIL EROSION

- **WATER AND WIND**
- LOSSES CAN BE LARGE
 - **WATER 3.5 BILLION t/yr**
 - ■WIND 1.5 BILLION t/yr
- **TILLAGE TRANSLOCATION**
- **ENVIRONMENTAL QUALITY ISSUES**
- LOSS OF PRODUCTIVITY
- **WE'VE BEEN LUCKY UNTIL 2000**

WATER EROSION

- BEGINS WITH RAINDROPS STRIKING BARE SOIL DISLODGING PARTICLES
- INTENSE RAINS SEAL SURFACE
- WHEN RAINFALL EXCEEDS INFILTRATION WATER IS STORED IN SMALL DEPRESSION
- ONCE DEPRESSIONS ARE FILLED, RUNOFF BEGINS

WATER EROSION

- INITIALLY WATER FLOWS IN A DISCONTINUOUS SHEET
- EVENTUALLY IT CONCENTRATES INTO SMALL CHANNELS OR RILLS. THE RUNOFF NOW HAS ENERGY TO BREAK OFF PARTICLES AND CUT DEEPER
- THE AMOUNT OF EROSION CAUSED BY SHEET AND RILL EROSION INCREASES WITH SLOPE AND DISTANCE
- RILLS MAY EVENTUALLY FORM GULLIES

PREDICTING EROSION - RUSLE

RUSLE - APPLICABLE CROPLAND USES

Where shallow overland flow occurs and erosion rates are high.

- Best: Midwest Corn, Soybean, Wheat
- Mod. Well: Conservation Tillage
- More Variable: Ridge Till, Support Practices

RUSLE - APPLICABLE CONDITIONS

- Slope Length: 50 300 feet
- Slope Gradient: 3-20%
- Medium textured soils
- Rainfall predominant precipitation and exceeds 20 inches/yr

WIND EROSION

- SALTATION DETACHES PARTICLES
- SMALLER PARTICLES SUSPENDED
- **LARGER PARTICLES CREEP**
- SANDY AND SILTY SOILS MOST SUSCEPTIBLE
- SOIL ACCUMULATION IN DITCHES AND FENCE ROWS

WIND EROSION

EROSION EFFECTS ON PRODUCTIVITY

- SHALLOW ROOTING ZONE
- LOWER AVAILABLE WATER
- LOSS OF NUTRIENTS AND O.M.
- **FARMING THE SUBSOIL**
 - POORER TILTH
 - ☐ GREATER PENETRATION RESISTANCE
- INCREASED HYDRAULIC COND.
 - "STRONGER" AGGREGATES
- CAN A SOIL BE "REHABILITATED"

TILLAGE TRANSLOCATION

- NET DOWNHILL MOVEMENT BY TILLAGE
- RESULTS IN SMOOTHING OF SURFACE
- WATER EROSION INCREASES RELIEF INTENSITY
- BOUNDARIES STOP MOVEMENT
- NOT ACCOUNTED FOR BY RUSLE
- INCREASES SOIL VARIABILITY

MECHANISM OF TILLAGE TRANSLOCATION

COMPARING WATER EROSION AND TILLAGE TRANSLOCATION

ORIGINAL SOIL SURFACE

8 % SLOPE

50 YR. SIMULATION OF WATER EROSION AND TILLAGE TRANSLOCATION (SCHUMACHER ET AL., 1999)

COMPARING WATER EROSION AND TILLAGE TRANSLOCATION

ORIGINAL SOIL SURFACE

WATER EROSION: EFFECTS
PRONOUNCED ON BACKSLOPE.
INCREASED CUTTING ALONG
SLOPE FACE WITH DEPOSITION ON
TOESLOPE.

COMPARING WATER EROSION AND TILLAGE TRANSLOCATION

TILLAGE

ORIGINAL SOIL SURFACE

TILLAGE TRANLOCATION: EFFECTS PRONOUNCED ON CONVEX SHOULDER. RESULTS IN SMOOTHING OF LANDSCAPE.

TILLAGE

TILLAGE TRANSLOCATION EFFECT ON SOIL PRODUCTIVITY INDEX

	SOIL PRODUCTIVITY INDEX							
EROSION PROCESS	SUMMIT		SHOULDER		BACKSLOPE		FOOTSLOPE	
DISTANCE (m)	10	20	30	40	50	60	70	80
TILLAGE TRANS.	0.87	0.72	0.67	0.70	0.86	0.86	0.92	0.91
WATER	0.87	0.73	0.72	0.66	0.81	0.78	0.94	0.94
TILLAGE TRANS. +WATER EROSION	0.87	0.70	0.64	0.64	0.80	0.81	0.95	0.95

SOIL LOSS AND PRODUCTIVITY

- WESTERN CANADA
- WHEAT
- REMOVED 0, 2, 4, 6, 8 TOPSOIL
- REPLACE NOTHING, N&P, 30 t/a MANURE, AND 2" TOPSOIL
- IRRIGATED AND NON-IRRIGATED
- LARNEY ET AL., 2000

TOPSOIL LOSS AND PRODUCTIVITY

TOPSOIL LOSS AND PRODUCTIVITY

EROSION CLASS EFFECT ON AVAILABLE WATER AND CORN GROWTH

EROSION CLASS	AVAIL. WATER	SILKING ET	MAX. HEIGHT	GRAIN YIELD	
	in/ 3 ft	in/day		in	bu/a
SLIGHT	7.8	0.17	91	146	
MODERATE	7.4	0.15	86	136	
SEVERE	6.9	0.14	81	137	

ANDRASKI AND LOWERY, 1992 (LANCASTER, WIS.)

CAN MANURE REHABILITATE AN ERODED SOIL?

EROSION	MANURE	ORG.	BULK	HYDRAULIC
CLASS		CARBON	DENSITY	COND.
		%	g/cc	cm/sec
SLIGHT	NO	1.4	1.32	0.0003
	YES	2.1	1.15	0.0007
MODERAT	E NO	1.6	1.32	0.0010
	YES	2.3	1.21	0.0019
SEVERE	NO	1.8	1.30	0.0009
	YES	2.5	1.20	0.0025

ARRIAGA, 2000 (LANCASTER, WIS.)

CORN YIELD ON A MANURED, ERODED SOIL (12 YEAR AVG.)

ARRIAGA, 2000 (LANCASTER, WIS.)

SUMMARY

- SOIL EROSION IS A SERIOUS PROBLEM
 - ENVIRONMENTAL
 - PRODUCTIVITY
- CONSERVATION PLANNING MUST BE AN INTEGRAL PART OF ALL OPERATIONS
- REDUCED EROSION FROM INCREASED RESIDUE AND CONSERVATION PRACTICES
- PRODUCTIVITY LOSS IS COMPLEX
- POTENTIAL TO QUICKLY RESTORE PRODUCTIVITY IS LIMITED