Filtering the Facts: What Monitoring on Farm Fields Tells Us About Sediment and P Losses

Dick Wolkowski
Extension Soil Scientist
UW-Madison

J.M. Norman, C.A. Bonilla, C.C. Molling, P.S. Miller, J.C. Panuska, K.G. Karthikeyan, K. Manchakanti, J. Topel, J. Leverich, L. Ward-Good, K. Klingberg, and D. Frame University of Wisconsin-Madison

Comparing Runoff, Sediment and P-Losses from Snow-Melt and Storm Events

Outline:

- Objectives and Strategy of Monitoring & Modeling Subcommittee of WBI
- Locations of Farms
- Measurement instrumentation
- Measurement sites & contributing areas
- Runoff, sediment & P-loss from selected farm sites
- Sediment trapping by an edge-of-field buffer
- Where might this take us
- Conclusion

The Wisconsin Buffer Initiative

Objective:

The Monitoring and Modeling Subcommittee should establish a research program, in coordination with all interested organizations, to support an ADAPTIVE MANAGEMENT approach to implementing buffers to reduce contaminant transport from agricultural land to streams and lakes.

- Establish field sites and measurement protocols to quantify the loss of P from several typical farm fields
- Select or create a suitable model to generalize the results from the limited number of measurement sites to diverse landscapes
- Use the combined results from the model and measurements to create a practical tool for practitioners to use to guide the implementation of buffers in Wisconsin.

Comparing Runoff and Sediment Losses from Snow-Melt and Storm Events

Five farms throughout Wisconsin used in this study (Wisconsin Discovery Farms Program)

> 110 site-collector events of runoff from 5 farms during 6/03 – 7/04

Instrumentation for Measuring Runoff, Sediment and Chemical Losses from Agricultural Fields

Requirements:

- Measurements where there is no source of power
- Remote locations on operation farms
- Measures nearest to discharge outlet as possible where slopes are small
- Contributing areas 0.5 acre
- Total runoff/chemical sediment losses per event

Acknowledgment:

Daniel Yoder, University of Tennessee

Created from accurate DEM using 4 different algorithms.

Contributing area 5 Sites: 0.1 to 2.5 acres

Data collection and analysis

Total runoff volume:

$$RO = V_1 + 12 \cdot V_2 + 12 \cdot 24 \cdot V_3 + 12 \cdot 24 \cdot 24 \cdot V_4$$

RO: Total runoff volume (m3)

V1 to V4 (m³): Volume of water collected in buckets 1 to 4, respectively.

Sediment and chemical mass:

$$SS = V_1 \cdot C_1 + 12 \cdot V_2 \cdot C_2 + 12 \cdot 24 \cdot V_3 \cdot C_3 + 12 \cdot 24 \cdot 24 \cdot V_4 \cdot C_4$$

SS: Total suspended solid (kg)

C1 to C4 (kg m⁻³): Concentration of solid/chemical measured in buckets 1 to 4, respectively.

Cost

Instruments	
Buckets with dividor heads	\$700
Pump system	
Solar panel, sump pump, marine battery	\$800
Data collection system	
Logger, ech2o probes, transmiter, rain gage, Ipaq	\$1,700
Materials	
Pipes, elbows, metal stakes, boards, tarp, etc.	\$400
Labor	
Box, installation	\$1,200
Total	\$4,800

Rainfall/runoff event

2.7 in, West-Central Wisconsin 6/8/04

	Water volume		Sediment	DRP	TP
	(m ³)	(gal)	(g/L)	(mg/L)	(mg/L)
Bucket 1	0.02	5.0	15	0.6	19.6
Bucket 2	0.02	5.0	10	0.5	8.9
Bucket 3	0.02	5.0	9	0.4	7.4
Bucket 4	0.07	17.7	4	0.3	3.8

Runoff: 124,200 gal

Sediment: 0.83 ton/acre

DRP: 0.14 lb/acre

TP: 1.61 lb/acre

Background Information on Farms

Site	Texture	Slope	OM	Bray P	Total P	Cont. area
		(%)	(%)	(mg/kg)	(mg/kg)	(acre)
Arlington	silt loam	8	4.6	68	647	0.09
Bragger East (alfalfa)	silt loam	13	3.8	62	646	2.49
Bragger West (corn)	silt loam	7	3.9	97	608	0.25
Knigge 1 (before buffer)	clay loam	5	2.9	29	442	0.08
Knigge 2 (buffer)	loam	5	2.8	19	391	0.10
Keopke East (alfalfa)	loam	8	4.3	128	864	0.12
Keopke West (alfalfa)	loam	8	4.3	110	846	0.52
Opitz 1 (before buffer)	sandy clay loam	10	2.8	64	566	0.41
Opitz 2 (buffer)	sandy clay loam	4	3.8	89	608	0.43

Background Information on Farms

	Snowmel	t	Rainfall		Total	Cont. area
Site	Events	Volume	Events	Volume	Events	
		(gal)		(gal)		(acre)
Arlington	4	3,032	9	92	13	0.09
Bragger East (alfalfa)	9	9,735	11	124,845	20	2.49
Bragger West (corn)	12	15,395	13	1,451	25	0.25
Knigge 1 (before buffer)	1	156	5	3,250	6	0.08
Knigge 2 (buffer)	1	6	6	3,342	7	0.10
Keopke East (alfalfa)	4	731	2	71	6	0.12
Keopke West (alfalfa)	4	1,578	6	1,677	10	0.52
Opitz 1 (before buffer)	2	1,967	11	68,035	13	0.41
Opitz 2 (buffer)	2	301	11	63,478	13	0.43
Total	39	32,901	74	266,241	113	

Comparing Runoff and Sediment Losses from Snow-Melt and Storm Events

- Comparison of Measurements with RUSLE2:
 - "T" for Opitz soil is 5 tons/ac/yr
 - Measured soil loss is 5.5 tons/ac/yr
 - RUSLE2 estimate of erosion is 13 tons/ac/yr
 - Annual average erosivity (R-value) for E1 is 120
 - Annual erosivity for runoff year is 116 (average erosive year)
 - Worst case scenario for measurements because ½ of annual R-value came in 1 month after tilling the soil for planting
 - For bare soil through the year, RUSLE2 ~ 22 tons/ac/yr

Sediment and P Trapped by an Edge-of-Field Buffer

Farm	Rainfall	Runoff	Sediment		DRP		TP	
	(in)	(gal)	Input (lb)	Captured (%)	Input (lb)	Captured (%)	Input (lb)	Captured (%)
Opitz								
Rainfall (10 eve	ents)							
total	17	67,989	4,534	57	0.35	48	9.74	54
average	2	6,799	453	74	0.04	34	0.97	72
maximum	3	23,292	2,162	100	0.14	100	3.90	100
minimum	1	7	0	2	0.00	-179	0.00	2
Snowmelt (2 ev	rents)							
total		1,965	4	94	0.02	90	0.01	85
average		983	2	97	0.01	95	0.01	92
maximum		1,885	3	100	0.02	100	0.01	100
minimum		80	0	94	0.00	90	0.00	84

Comparing Runoff and Sediment Losses from Snow-Melt and Storm Events

- Sediment trapping by edge-of-field buffers on Field E (55% sand)
 - Checked measurement system by comparing trapped sediment with measurements before and after buffer

Comparing Runoff and Sediment Losses from Snow-Melt and Storm Events - Summary

- Sediment trapping by edgeof-field buffers on Field E (55% sand)
 - Sediment trapping measured over 45 ft. of buffer of tall grasses
 - 13% of runoff water infiltrated into buffer
 - 57% of storm sediment and 97% of snowmelt sediment trapped by buffer
 - 50% of storm P & 90% of snowmelt P trapped by buffer

PALMS (Precision Agricultural-Landscape Modeling System) Combine models of vertical transport in soil and canopy with overland flow models

Application to the Bragger Farm

6.8 acre14% slopeSilt loam3.5 in(Actual rain event)

PALMS Simulation on Bragger Farm with 90 mm of Rain

Interrill erosion (kg/m²)

Net total erosion (kg/m²)

 $10 \text{ kg/m}^2 = 40 \text{ t/ac}$

Where Would You Put the Buffer?

Conclusions from Measurements

- Sediment loss is much more variable than runoff over the 5 farm fields
- Estimates of erosion from RUSLE2 are higher than measured soil losses (2 to 10 times)
 - Reason may be the difference between real fields and a model based on measurements from small unit plots
- Buffer effectiveness depends on many factors and varied from 50 90% for sediment, DRP and TP
- Sediment concentrations (mg/kg) and P losses (lb/ac) in snowmelt were an order of magnitude smaller that storm runoff
- P loss from 0.01 to 10 lb/ac/yr were measured