Foliar Fertilization of Soybeans

Keith Kelling

Department of Soil Science
University of Wisconsin

Application opportunities:

1. Early season N,P,K (V4-V6)

2. Midseason micro-nutrients (B,Mn)

3. Podfill N,P,K,S (R2-R7)

Field trial success:

Iowa early season studies

- Increases at 7 of 48 sites; decreases at 2 of 48 sites; average + 0.80 bu/a
- 2. Increases at 3 of 27 sites; decreases at 3 of 27 sites; average + 0.27 bu/a
- No yield increases or decreases at 18 sites; average + 0.71 bu/a

Responses more likely with dry spring/early summer, where available P/K low, plant growth poor.

Application costs exceeded benefits

Podfill trial results:

Garcia and Hanway (1976)

Exp 1 = yield +1.2 to 7.0 bu/a average =
$$+3.62$$
 bu/a

Exp 2 = yield -2.5 to +15.5 bu/a average =
$$+2.74$$
 bu/a

Exp
$$3 = yield + 22.2 to + 23.4 bu/a$$

Exp
$$4 = yield -3.6 to +8.6 bu/a$$

average = $+7.26 bu/a$

Exp
$$5 = yield -0.5 to +5.7 bu/a$$

average = $+6.40 bu/a$

Exp
$$6 = yield -5.8 to +6.6 bu/a$$

average = -5.16 bu/a

Other studies:

Florida -3.1 bu/a

Maryland +8.89 bu/a

Minnesota +0.65 bu/a

Wisconsin +1.41 bu/a

Georgia -4.43 bu/a

TVA various loc. -5.51 bu/a

Response of soybeans to foliar fertilizer at several Minnesota locations

Treatment	Yield		
	Waseca	Becker	Rosemount
		bu/a -	
Control	54	56	61
Foliar *	57	53	63
APP + UAN*	47	48	58

^{* 4} applications Adapted from Rehm, 1997

Micronutrient studies mixed

 B increased pods/branch sandy, low OM soils worse

 Mn increased yield on high OM, high pH soils

Premium mixes promoted

Summary of soybean yield and leaf tissue B, response to late season foliar B applications. Wisconsin, 1989-90.²

Foliar	11 in. rows			30 in. rows	
В	1989	1989	1990	1990	1990
Rate ¹	Hancock	Arlington	Hancock	Arlington	Arlington
lb/a			Yield (bu/	'a)	
0	69.0	68.7	55.5	78.9	55.1
0.5	69.2	66.9	55.4	78.7	55.0
LSD (10%)	NS	1.2	NS	NS	NS
			- Leaf Tissu	е В	
0	36.8	33.8			
0.5	39.1	36.3			
LSD (10%)	2.1	1.0			

¹ Applied as a foliar spray using 5 applications from GS R1 to R5.

² Data presented are the mean of 16 N and/or variety combinations. There were no B x N or B x variety interactions in any study. Adapted from Oplinger et al 1993.

Summary of soybean responses to foliar or soil application of B from several states

Treatment	Yield *			
	IL	MO	ОН	WI
		b	u/a	
Control	42.2	43.0	52.4	51.2
Foliar +	43.2	43.3	53.3	51.5
Soil ‡	38.3	42.8	52.5	51.9

Adapted from Oplinger et al, 1993.

^{*} Average of 2 years of data from 3 sites in IL, 2 in MO, 3 in OH, and 6 in WI

⁺ Data reported as average for the 0.25, 0.5, and 1.0 lb B/a rates

^{‡ 3}lb B/a applied

Comparison of row vs. foliar manganese on soybean yield

Tmt	Mn rate	Yie	eld
		1970	1971
	lb Mn/a	bu/a	
Check		56.1	44.5
Row	10	61.8	60.8
Row	20	65.6	62.4
Row	40		62.5
Foliar (2x)	0.5	64.7	58.9
Foliar (2x)	1.0	62.1	59.9
Foliar (2x)	2.0	60.4	57.4

Adapted from Randall et al, 1975. All Mn as MnSO₄; yields similar with foliar Mn EDTA at one-third the rate.

Number of foliar applications needed to optimize soybean yields

Number of		Yield	
foliar applic	1970	1971-1	1971-2
		bu/a	
O	56.5	42.5	21.9
1	65.1	54.0	26.3
2	68.7	58.8	28.8
3	71.4		29.6

Each application contained 0.15 lb Mn/a as Mn EDTA; applications in mid June, early July, and mid July. Adapted from Randall et al, 1975

Example of "premium" soybean foliar fertilizer

Nutrient	Premium	n Fertilizer	UW recom+
	Conc.	Amount *	
	%	lb/a	
Mn	3.2	0.31	0.30
Zn	3.1	0.21	0.25
Fe	0.3	0.03	0.45
В	0.2	0.02	0.10
Mo	0.01	0.01	0.05

^{* 2} qt/a applied twice.

⁺ Chelated form assuming need exists

Crop Booster Scoring Tips

```
High Yield Potential Soybeans (>50 bu)
                                                 10pts
Moderate Yield Potential
                             (45 bu)
                                                5 pts
Low Yield Potential
                              (<40 bu)
                                                 0 pts
High pH Soils (7.0 or greater)
                                                 10 pts
Moderate pH
                 (5.8-7.0)
                                                 5 pts
Low pH
                                                 0 pts
Fields with recent lime applications
                                                 10 pts
High phosphorus or zinc levels
                                                 10 pts
Moderate phosphorus levels
                                                 5 pts
High organic matter soils
                                                 7 pts
Heavy, wet, or poorly drained soils
                                                 10 pts
Drought conditions
                                                 5 pts
Flooded conditions for more than 3 days
                                                 7 pts
Tissue test levels 0-5ppm
                                                 20 pts
                                                 10 pts
                5-10ppm
               10-20ppm
                                                 5 pts
```


Example field

50 bu/a yield goal	10 pts
pH 7.3	10 pts
Not limed	0 pts
Soil test P = 40 ppm	5 pts
25% OM	0 pts
Kewaunee soil	10 pts
Not droughty	0 pts
Not flooded	0 pts
Tissue Mn = 18 ppm	5 pts
	40

Key

40 pts

- <30 Yield increase unlikely
- 30-60 High probability of an increase in yield
- >60 Make an application

Bottom line:

Responses to foliar NPKS

early -- unlikely

podfill -- occasionally

Responses to foliar micronutrients

Soil specific Nutrient specific Multiple applications often better

UW Soil Science Department

