Should corn hybrid selection influence N fertilizer rate decisions?

Carrie Laboski
Extension Soil Fertility/Nutrient Management Specialist

Soil, Water, & Nutrient Management Meetings
December 1-6, 2011

Background

 The first increment of N applied has the greatest efficiency and potential for economic return

Background

 CRW resistant hybrids have larger root system if not stressed by CRW larval feeding

Is more N needed to feed a larger plant, or is less
 N needed because the root system is more

efficient?

CurrentPotential 1Potential 2Potential 3

Objective:

 To determine if corn hybrids with a transgenic CRW resistant gene vary in their NUE and N need compared to non-resistant hybrids

Methods & Materials

Site background & Experimental design

- Previous crop = corn
- Weather
 - 2008: Wet June; cool allseason
 - 2009: somewhat dry; cold
 - 2010: June & July wet;
 somewhat warmer July & Aug.
- Insecticide applied to all plots

Date	Root injury rating in border; 0- 3 node-injury scale
7/24/08	1.12
7/27/09	0.19
7/26/10	1.50

- N x hybrid; full factorial, CRD
 - 4 replications
- 6 N rates
 - -0-200 lb N/a
 - Applied post emergence
- 8 Hybrids

Hybrids

			-		
Hybrid	Hybrid i.d.	Brand	Hybrid	CRM	Traits
1	Bt-CR 1	Pioneer	P35F44	105	(CB & CRW) Herculex Xtra, Roundup Ready 2, Liberty Link
2	Isoline 1	Pioneer	P35F37	105	Roundup Ready 2
3	Bt-CR 2	DeKalb	DKC52-59	102	(CB & CRW) Yield Guard VT3, Roundup Ready
4	Isoline 2	DeKalb	DKC52-62	102	Roundup Ready 2

Hybrid	Hybrid i.d.	Brand	Hybrid	CRM	Traits
5	Standard Bt- CB	Northrup King (08/09)	N58-D1	107	(CB) Yield Guard
		Renk (10)	RK670	103	(CB) Yield Guard
6	Standard nontransgenic	Pioneer (08)	35A30	106	None
		Pioneer(09/1 0)	35F38	105	None
7	Bt-CR (Mon863) 1	Renk (08)	R698RRYGRW	104	(CRW) Yield Guard Roundup Ready
		DeKalb (09/10)	DKC55-4 (VT3)	105	(CB & CRW) Yield Guard VT3, Roundup Ready
8	Bt-CR (Mon863) 2	Dairyland	ST400	106	Roundup Ready, CRW

Results

Yield response to N

Relationship between yield and N need

Relationship between yield increase $(\Delta Yield)$ and N need

No relationship between the amount of N needed and the yield increase over no N

N use efficiency

Effect of CRW trait on RY, PFP, and ANFE

Hybrid	Relative Yield ₂₀₀			Partial Factor Productivity ₁₆₀			Agronomic N Fertilizer Efficiency ₁₆₀		
	2008	2009	2010	2008	2009	2010	2008	2009	2010
	%		bu/lb N fert			Δbu/ lb N fert			
CRW	68a	<i>57</i> b	60b	1.45a	1.26b	1.47a	0.44b	0.53a	0.57a
Non- CRW	67a	53b	54b	1.44a	1.27b	1.43a	0.47b	0.58a	0.62a
р	ns	ns	ns	ns	ns	ns	ns	ns	ns

For a given measure of NUE, values in each row followed by the same letter are not significantly different at the 0.10 probability level.

p values compare an isoline pair in each year. ns = not significant; * = p < 0.10.

Extension

University of Wisconsin-Madison

Effect of CRW trait on INUE, PE, and FNRE

Hybrid	Internal N Use Efficiency ₁₆₀			Physiological Efficiency ₁₆₀			Fertilizer N Recovery Efficiency ₁₆₀		
	2008	2009	2010	2008	2009	2010	2008	2009	2010
	bu/lb N uptake		Δbu/Δlb N uptake			Δ lb N uptake/ lb N fert.			
CRW	1.01b	1.06a	0.94c	0.81	0.92	0.87	0.58	0.59	0.66
Non- CRW	1.03b	1.07a	0.92c	0.95	0.95	0.87	0.52b	0.61b	0.74a
р	ns	ns	ns	ns	ns	ns	ns	ns	ns

For a given measure of NUE, values in each row followed by the same letter are not significantly different at the 0.10 probability level.

p values compare an isoline pair in each year. ns = not significant; * = p < 0.10.

Extension

University of Wisconsin-Madisor

N response CRW vs non-CRW hybrids

Year	Yield at 0 N CRW non-CRW			plateau N ate non-CRW	Plateau N rate CRW non-CRW		
	bu/a		b	ου/α	lb N/a		
2008	161	154	235	228	152	139	
2009	115	110	206	206	160	164	
2010	145*	130*	240	234	165	154	

When averaged overall years, Yield at 0 N for non-CRW hybrids is significantly less than CRW hybrids.

^{*} CRW and non-CRW hybrids are significantly different for Yield at 0 N in 2010.

Summary

- CRW traited hybrids are more efficient in using mineralized soil N in 0 N plots
 - However, this does not translate to significantly greater yield levels when fertilized or different N needs
- There can be a wide range in optimum N rates between hybrids planted in the same field
- True precision N management will be limited until we can more accurately estimate crop N need, soil N mineralization, and N losses
- The MRTN approach to N rate selection...
 - Averages N response in many fields with many hybrids
 - Thus, differences in N need are taken into consideration

Questions?

Thanks to:

- Todd Andraski
- Joe Lauer
- Fluid Fertilizer Foundation
- Wisconsin Fertilizer Research
 Program
- Brookside Lab
- Waters Ag Lab

Contact Info:

- Carrie Laboski
- laboski@wisc.edu
- 608-263-2795
- www.soils.wisc.edu/extension/

