Progress on the Gulf of Mexico Hypoxia Issue

K. A. Kelling

Department of Soil Science
University of WisconsinMadison

Anoxia = No oxygen

Hypoxia = Low Oxygen (<2 ppm)

The hypoxic zone in the Gulf of Mexico*

Causes of hypoxia:

1. Decomposition of organic matter stimulated by nutrients

Stratification of fresh and salt water

Factors affecting gulf hypoxia:

Controlling factors –

- Nitrogen load, especially nitrate
- Silicon decline
- Organic carbon loading

Contributing factors –

- Basin landscape changes
- Loss of coastal wetlands
- Intrusion of offshore waters
- Climatic changes

Map of the Louisiana coast showing areas where mid-summer hypoxia occurs most frequently*

Areal extent of hypoxic zone, 1985-1999 (adapted from N. Rabalais)

Annual loads of nitrate, organic nitrogen and annual streamflow from the Mississippi River basin to the Gulf of Mexico*

^{*} Taken from CENR publication "Draft: Integrated Assessment of Hypoxia in the northern Gulf of Mexico."

Annual nitrogen inputs to the Mississippi/Atchafalaya River Basin*

^{*} Taken from CENR publication "Draft: Integrated Assessment of Hypoxia in the northern Gulf of Mexico."

Average annual nitrate yields (1980-96) for 42 basins within the Mississippi/Atchafalaya River Basin*

^{*} Taken from CENR publication "Draft: Integrated Assessment of Hypoxia in the northern Gulf of Mexico."

Documents available:

- CAST Task Force Report 134: Gulf of Mexico Hypoxia, Land and Sea Interactions.
 - J. A. Downing (chair)
- CENR Hypoxia Assessment Reports
 - Characterization of hypoxia
 - 2. Consequences of hypoxia
 - Nutrient flux and sources
 - 4. Effects of reducing nutrient loads
 - Methods to reduce nutrient loads
 - 6. Cost and benefit analysis

Approaches to reduce, mitigate and control hypoxia:

1. Reduce nitrogen inputs

2. Restore and enhance denitrification and nitrogen retention

Suggested actions to reduce N loading:

- Limit N to recommended rates
- Apply all N in spring
- Manage manure N
- Include perennials in cropping system
- Plant cover crops
- Switch to conservation tillage
- Increase tile spacing
- Control water table to promote denitrification
- Route drainage through wetland

Special emphasis:

1. Reduce nitrogen fertilizer by 20% (eliminate "insurance;" take credits; use N tests; better timing/placement)

2. Alternative cropping systems (10% less corn/soybean)

3. Manage feedlot runoff

Summary of costs for N reduction actions:

Scenario		Reduction in N loss	Cost per lb N saved
		Thousand ton/yr	\$/lb N loss
Edge of field nitration	20%	1037	0.36
	40%	2074	1.45
	60%	3110	3.29
Fertilizer reduction	20%	554	0.30
	45%	1132	1.25
500% fertilizer tax		1132	6.47
Wetland			
restoration	1 M acres	74	-0.98
	5 M acres	386	0.45
	10 M acres	786	1.25
Adapted CENR Report 5	(19 M		
Dinarian huffore	acrael	763	11 62

Nitrate Loading in Mississippi River is Declining, as are the Pounds of Nitrogen Used to Produce a Bushel of Corn.

Taken from "Comments of the American Farm Bureau Federation To Gulf of Mexico Hypoxia Working Group," 1999.

Reactions:

The Fertilizer Institute

Potash/Phosphate Institute

American Farm Bureau Federation

Illinois Geologic Survey

You?

Next steps:

 Review comments on Integrated Assessment

Debate positions

Create action plan
 Open for comment
 Finalize recommendations

CENR Hypoxia Report Location

www.nos.noaa.gov

Wisconsin Implications

- Voluntary or Regulatory
 - 20% N fertilizer reductions
 - 10% more forage
 - Control feedlot runoff
 - Limit ag drainage
- WDATCP ATCP 50 rewrite
 - Requires NM plan
 - Certified soil labs
 - Limits unincorporated manure applications

Provisions of Nutrient Management Plan

- All fields
- Qualified planner
- Based on soil tests
- Nutrient recommendations may not exceed UW recommendations
- Complies with NRCS 590