USING THE PSNT AND NITROGEN CREDITING TO IMPROVE CORN NITROGEN RECOMMENDATIONS

Larry G. Bundy and Todd W. Andraski
Dept. of Soil Science
University of Wisconsin

Introduction and Rationale

- Excess N can lead to reduced economic returns and environmental problems.
- The PSNT and N crediting can improve accuracy of N recommendations.
- These practices are often not used due to concerns about reliability and profitability.

Objectives

- Compare the PSNT and N crediting for predicting optimum N rates for corn.
- Determine economic benefits of using the PSNT and N crediting in corn production.

Procedure for N Crediting/PSNT Evaluation

- 101 corn N response trials on research and private farms, 1989-1999
- High (56%) and medium (44%) yield potential soils
- Sites included N fertilizer, manure, legume N, and rotation variables
- Book value N credits (BVNC) calculated

Corn Nitrogen Recommendations Based on Presidedress Soil Nitrate Test (PSNT)

Con Hold I Clottila	Soil	Yield	Potential
---------------------	------	-------	-----------

PSNT Result	Very High/High	Medium/Low
ppm N	— N Application Rate, lb/a —	
> 21	0	0
20-18	60	40
17-15	100	40
14-13	125	80
12-11	150	80
< 10	160 **	120 **

^{**} Unadjusted nitrogen application rate.

Procedure for N Crediting/PSNT Evaluation

- Three N rate recommendations compared at each site for accuracy vs. EONR and for economic return
 - PSNT
 - Book value credits (BVNC)
 - Base N rate (no credits)

Site-specific factors affecting PSNT performance

- Years since manure or legume N input
 - **-**>3, 1-3, <1
- Soil yield potential
 - Medium, High or very high
- Air temperature vs. ave.
- Precipitation <u>vs</u>. ave.

Accuracy Criteria for N Recommendations

- Correct = +/- 34 kg N/ha of EONR
- Over-applied = > 34 kg N/ha above EONR
- Under-applied = > 34 kg N/ha below EONR

Temperature effects on accuracy of PSNT-based N recommendations

Soil yield potential effects on accuracy of PSNT-based N recommendations

Ave. or higher May-June temps.

May-June temperature effects on PSNT-based N recommendations

Economic gains from PSNT- and BVNCbased N recommendations 1/

Management	Increase in return		
System ^{2/}	PSNT	N credits (BVNC)	
		\$/ha	
< 1 year	36	31	
1-3 years	40	2	
> 3 years	0	0	

^{1/} High yield potential soils, Ave. or above May-June air temps.

^{2/} Years since manure or legume N inputs

Conclusions

- Accuracy of PSNT rate recommendations is lower if May-June temps. are below normal.
- PSNT is more accurate on high than on medium yield potential soils.

Conclusions

- Economic returns are higher with PSNT where manure or legume N inputs occurred within 1-3 yr.
- Economic returns are higher with BVNC for 1st yr manure or legume N inputs and on medium yield potential soils.

Conclusions

- Using PSNT or BVNC lowered N rates by 90 to 102 kg N/ha where manure or legume N inputs occurred within 3 yr.
- Adjusting N rate recommendations using BVNC or PSNT is more profitable (ave. \$19/ha) than not making these adjustments.