Strategies for Input Spending: Making the Most of Your Fertilizer Dollars

K.A. Kelling
Department of Soil Science
University of Wisconsin- Madison

Decisions to be made:

- Where to cut?
- Where not to cut?
- Consequences of decisions?

Production costs for corn with yield potential of 150 bu/a.

		\$/a	%
Land preparation		22.00	7.7
Seed and planting		20.00	7.0
Chemicals and application		20.00	7.0
Cultivation		7.50	2.6
Harvesting, hauling		36.00	12.7
Drying storage		18.00	6.3
Land, taxes, interest		120.00	42.3
Insurance		5.00	1.8
Other, lime, etc.		5.00	1.8
Fertilizer		30.30	10.8
	Total	283.80	100.0

Colliver, 1993

10 Basic Principles of Fertilizer Economics

- 1. In tough times the efficient survive.
- 2. Profit maximum where returns just pay for investment.
- 3. Last bushel is least expensive to produce.
- 4. Lime and immobile fertilizer are capital investments.
- 5. With dollars short, consider alternatives.

10 Basic Principles of Fertilizer Economics

- 6. Most crop response to first units applied
- 7. More profit may be lost by under than over application of fertilizer.
- 8. Land and fertilizer can be substituted for one another.
- 9. All soils/crops do not respond the same.
- 10. Individuals can't set farm policy.

Influence of soil test P on sufficiency, probability of response, and expected yield increase.

Soil test P	% Sufficiency	% Probability of Response	inc. at	ted yield yield goal 150 bu/a
ppm	%	%	b	ou/a
7	69	98	-	-
12	87	70	16	20
17	94	50	8	9
22	96	20	5	6
27	98+	<1	2	3

Colliver, 1986

Example: Soil Test = 17; YG = 125

94% sufficiency

8 bu/a expected yield increase

50% probability

- = 4 bu/a/yr
 - •• 32 lbs P₂O₅ (\$0.25 and \$2.00 corn)

Increase in Profit at Lancaster from P and K Topdressing

	Lancaster (6 yr Avg.)			
K ₂ O levels	$0 P_2 O_5$	$57 P_2 O_5$	114 P ₂ O ₅	
	\$ profit above fertilizer cost			
0		-8.26	-20.02	
120	32.40	25.14	22.88	
240	34.30	35.04	29.78	
480	26.10	33.34	21.58	
720	20.40	15.14	3.88	
Initial soil tests P=34	K = 171			

Based on hay at \$80/ton; P2O5 at \$0.26/lb; K2O at \$0.14/lb. Adapted from Kelling, 1984.

Methods to Improve Nutrient Use Efficiency:

- Avoid N losses
- Use proper timing, placement, and choice of materials
- Use banded fertilizer
- Make annual additions
- Concentrate on low testing fields

Grow Best Crop Possible:

- Variety
- Tillage
- Population
- Weed control
- Timeliness
- Rotations

Soil pH and row applied P on corn grain yield at Arlington, WI.

Lime Treatment	Row P ₂ O ₅ treatment (lb/a)			
(T/A)	0	35	70	
	Yield, bu/a			
0	123	129	134	
3.1	126	140	137	
6.2	132	139	140	

Original soil pH was 4.8 and Bray P₁ 34 ppm (Kelling, Wolkowski, and Fixen, 2 yr. Avg.)

Average Nitrogen Response on Continuous Corn at Arlington, WI, (8 yr Average)

lbs/a	Cost of		Value of	Profit per acre		Return per
of N	40 lbs	Yield	added	from each	from all	dollars
added	of N **	(bu/a)	yield **	N increment	N fert	spent
0		92				
40	\$6.00	127	35	\$70.00	\$64.00	\$11.67
80	6.00	143	16	32.00	26.00	5.33
120	6.00	152	9	18.00	12.00	3.00
160	6.00	155	3	6.00	0.00	1.00
200	6.00	156	1	2.00	-4.00	0.33

^{**} Assuming the cost of N as anhydrous ammonia to be 15 cents/pound and no application cost and value of corn to be \$2.00/bu.

Our Priority Listing (in order):

- 1. Lime to 6.5 if growing alfalfa; 6.0 for most other crops
- 2. Use manure for building P and K and N on corn
- 3. Take legume credits
- 4. Use recommended N on corn
- 5. Use row P and K through optimum testing fields (all crops)

Our Priority Listing (in order):

- 6. Apply recommended P and K on very low and low testing fields
- 7. Apply 75% of recommended P and K to forages
- 8. Apply other recommended fertilizer
- 9. Apply micros only where needed
- 10. Avoid "silver bullet" search

7 "Fail-Safe" Steps for Maximizing Fertilizer Returns with Limited Resources

- 1. Soil test to determine need.
- 2. Lime adequately
- 3. Grow best crop possible
- 4. Use "right" rate
- 5. Take nutrient credits
- 6. Maximize efficiency /avoid losses
- 7. Avoid unnecessary additions

7 "Fail-Safe" Steps for Maximizing Fertilizer Returns with Limited Resources

- 1. Soil test to determine need.
- 2. Lime adequately
- 3. Grow best crop possible
- 4. Use "right" rate
- 5. Take nutrient credits
- 6. Maximize efficiency /avoid losses
- 7. Avoid unnecessary additions

When Dollars are Short:

- Skip H, VH, and EH testing fields
- Where tests are about equal- better to apply some to all, rather than rec. on some and 0 on others
- Satisfy N needs first: then row P and K on optimum soils and below

Risk Associated with Various Soil Test Levels

