## SOIL MANAGEMENT AND POTASSIUM AVAILABILITY

# DICK WOLKOWSKI DEPARTMENT OF SOIL SCIENCE UW-MADISON

### THERE WERE NUMEROUS QUESTIONS IN 2000

- RELATED TO WEATHER?
  - DRY EARLY
  - **HEAVY RAINS IN MAY AND JUNE**
  - RELATIVELY COOLER SUMMER
- RELATED TO MANAGEMENT
  - **NO-TILL AND HIGH RESIDUE FIELDS**
  - **MODERATE SOIL TEST K FIELDS**
  - SOME FOLLOWING ALFALFA

#### REFRESHER – K IN SOILS AND PLANTS

- K (KALIUM) IS A CATION
  - >90% OF TOTAL K IS UNAVAILABLE
  - <2% IS READILY AVAILABLE</p>
- MOST AVAILABLE K ON CEC
  - LEACHING AN ISSUE ON SANDS AND ORGANIC SOILS
  - **MOVEMENT ON MTS & FTS SMALL**
- PLANT USE AFFECTED BY
  - MOVEMENT TO ROOT SURFACE
  - ACROSS ROOT MEMBRANE

### K FERTILIZATION AND LEACHING IN ANNUALLY TOPDRESSED ALFALFA



HANCOCK, WIS., 1979-1983 WOLKOWSKI AND KELLING

### NUTRIENT MOVE TO ROOT SURFACE BY THREE MECHANISMS

- DIFFUSION
  - MOVEMENT FROM HIGHER TO LOWER CONCENTRATION
  - RANDOM MOVEMENT OF ATOMS
- **MASS FLOW** 
  - MOVEMENT IN WATER BEING ABSORBED BY PLANTS
- ROOT INTERCEPTION
  - **ROOT GROWS TO EXISTING ION**

## RELATIVE IMPORTANCE OF OF NUTRIENT MOVEMENT MECHANISMS FOR A 150 bu/a CORN CROP

| NUT. | AMT.<br>(lb/a) | ROOT<br>INTERC. | MASS<br>FLOW | DIFFUSIO<br>N |
|------|----------------|-----------------|--------------|---------------|
| N    | 190            | 2               | 150          | 38            |
| Р    | 40             | 1               | 2            | 37            |
| K    | 195            | 4               | 35           | 156           |

#### **MOVEMENT ACROSS ROOT MEMBRANE**

- PASSIVE vs. ACTIVE TRANSPORT
  - PASSIVE IS MOVEMENT DOWN AN ELECTROCHEMICAL GRADIENT
  - ACTIVE REQUIRES ENERGY BECAUSE TRANSPORT IS AGAINST EC GRADIENT
- LK IS ABSORBED BY AN ACTIVE PROCESS
  - **THE ONLY CATION ACTIVELY ABSORBED**
  - **ROOT RESPIRES**
  - UTILIZES PHOTO-SYNTHATE AND NEEDS 02
  - <10 % O<sub>2</sub> REDUCES GROWTH
  - REDUCTIONS IN AIR-FILLED POROSITY WOULD REDUCE K UPTAKE

#### **BULK DENSITY AND POROSITY**

- BULK DENSITY = MASS/VOLUME
  - PARTICLE DENSITY: 2.65 g/cc
  - SAND: 1.5-1.6 g/cc
  - SILT LOAM: 1.2-1.3 g/cc
- **POROSITY:**  $1 D_b / D_p$ 
  - □ SAND: 1 1.6/2.65 = 0.40
  - $\square$  SILT LOAM: 1 1.2/2.65 = 0.55
- INCREASING BULK DENSITY REDUCES POROSITY

### COMPACTION EFFECT ON POROSITY AND PORE SIZE DISTRIBUTION

|            |                   | F                                | PERCENT SIZE                                                   |                                                                         |                                                                                    |
|------------|-------------------|----------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| DEPTH (in) | POROSITY (%)      | L                                | M                                                              | S                                                                       | VS                                                                                 |
|            |                   |                                  |                                                                |                                                                         |                                                                                    |
| 1-4        | 53.4              | 27                               | 7                                                              | 36                                                                      | 30                                                                                 |
| 6-9        | 52.5              | 24                               | 5                                                              | 39                                                                      | 32                                                                                 |
|            |                   |                                  |                                                                |                                                                         |                                                                                    |
| 1-4        | 47.9              | 5                                | 13                                                             | 43                                                                      | 39                                                                                 |
| 6-9        | 47.9              | 5                                | 9                                                              | 48                                                                      | 38                                                                                 |
|            | 1-4<br>6-9<br>1-4 | 1-4 53.4<br>6-9 52.5<br>1-4 47.9 | DEPTH (in) POROSITY (%) L  1-4 53.4 27 6-9 52.5 24  1-4 47.9 5 | DEPTH (in) POROSITY (%) L M  1-4 53.4 27 7 6-9 52.5 24 5  1-4 47.9 5 13 | DEPTH (in) POROSITY (%) L M S  1-4 53.4 27 7 36 6-9 52.5 24 5 39  1-4 47.9 5 13 43 |

#### POTASSIUM ACCUMULATES EARLY



#### **BULK DENSITY EFFECT ON SOYBEAN**

| BULK<br>DENSITY | K ADDED | SHOOT<br>WEIGHT | ROOT AREA | SHOOT K |
|-----------------|---------|-----------------|-----------|---------|
|                 | ppm     | oz/pot          | sq in/pot | %       |
| 1.25            | 0       | 0.086           | 85        | 1.68    |
|                 | 100     | 0.092           | 84        | 1.91    |
|                 |         |                 |           |         |
| 1.45            | 0       | 0.081           | 57        | 1.48    |
|                 | 100     | 0.087           | 67        | 1.79    |

**HALLMARK AND BARBER, 1981** 

#### **BULK DENSITY EFFECT ON CORN**

|                 | KEWAUNEE |        | PLAINFIELD |        | PLANO  |        |
|-----------------|----------|--------|------------|--------|--------|--------|
| BULK<br>DENSITY | LEAF K   | ROOT   | LEAF K     | ROOT   | LEAF K | ROOT   |
|                 | g/plt    | mg/plt | g/plt      | mg/plt | g/plt  | mg/plt |
| INITIAL         | 1.12     | 39.6   | 0.72       | 32.0   | 1.00   | 42.3   |
| X 1.25          | 0.98     | 35.7   | 0.60       | 30.8   | 0.92   | 39.2   |

WOLKOWSKI, 1990

INITIAL D<sub>b</sub>: KEWAUNEE=1.17, PLAINFIELD=1.36, PLANO=0.88

### RESPONSE OF CORN TO ROW K FERTILIZATION ON A COMPACTED SOIL



OSHKOSH, WIS. (WOLKOWSKI, 1989)

### RESPONSE OF ALFALFA TO TOPDRESSED K FERTILIZER ON A COMPACTED SOIL



ARLINGTON, WIS. (WOLKOWSKI, 1992-1994)

### RESPONSE OF ALFALFA TO SOIL TEST K ON A COMPACTED SOIL



ARLINGTON, WIS. (WOLKOWSKI, 1992-1994)

#### SUMMARY

- **WEATHER LIKELY AFFECTED K UPTAKE**
- DEVELOPMENT AND EARLY UPTAKE
- POROSITY COULD CONTRIBUTE
- REDUCE COMPACTION AND PAY ATTENTION TO K FERTILITY