Potassium & Potassium Management

Carrie Laboski
Department of Soil Science
UW- Madison

Potassium Cycle

K release during mineral weathering

Exchangeable vs. Non-exchangeable K

Exchangeable K Readily buffers soil solution K

Soil tests measure exchangeable K

Non-Exchangeable K Slowly buffers soil solution K

Factors Influencing Exchangeable K

- Wetting/drying
- Freeze/thaw
- Oxidation state of Fe

Wetting/Drying

- Exchangeable K can increase or decrease when soil is dried
 - Is dependent upon the clay minerals present
- K fixation can occur
 - Soils with high exchangeable K or recent K fertilizer applications are dried
 - Fixation is a result of K becoming trapped within clay sheets as they dry and collapse
- K release can occur
 - Soils low in exchangeable K are dried
 - The clay sheets roll back and release K

Wetting/Drying

- Net effect depends on whether fixation or release dominates
- Time of soil sampling in relation to field wetting and drying cycles may influence soil test K levels

Freeze/Thaw

- Fixed K released with freeze/thaw
 - Soils with considerable amount of mica
- K release/fixation not impacted by freeze/thaw
 - Soils with smaller amounts of mica & greater amounts of exchangeable K
- STK may be different in spring v. fall
 - Depending on clay minerals present & winter weather conditions

Oxidation State of Fe

- Fe structural component in clay minerals
- Fe has different oxidation states
 - Fe³⁺ oxidized
 - Fe²⁺ reduced
- In smectites, as Fe³⁺ → Fe²⁺, K is fixed
- In illite, as Fe³⁺ → Fe²⁺, K is released
- In soils containing both illite & smectite, net effect of fixation/release depends on which clay mineral dominates

Clay Minerals in WI

- Composition of clay minerals varies
- Environmental impacts on STK may vary differently depending upon region

C. Stiles, personal communication (2004)

What does a soil test measure?

- Soil test K measures:
 - K in soil solution
 - Exchangeable K
- Seasonal variation in soil test K is known to exist
 - Sample at about same time each year to minimize this factor

	Medium	& fine soils	Course textured soils†		
Crop	Optimum	No response	Optimum	No response	
	Soil Test K (ppm)				
Alfalfa	91 – 120	> 170	81 - 120	> 180	
Corn	81 – 100	> 140	66 – 90	> 130	
Soybean	81 – 100	> 140	60 – 80	> 120	

† Not irrigated

Environmental Factors Affecting K Availability to a Plant

Soil moisture

- Low soil moisture results in more tortuou diff for K diffusion – takes longer to get to root
- Increasing K levels or soil moisture will increase K diffusion
- Increase soil moisture from 10 to 28 % can increase toatl K transport by up to 175 %

Soil Aeration

 High moisture results in restricted root growth, low O₂ and slowed K absorption by the root

78 % of K supplied to root via diffusion

Environmental Factors Affecting K Availability to a Plant

- Soil temperature
 - Low temperature restricts plant growth and rate of K uptake
 - Providing high K levels will increase K uptake at low temperatures
 - Reason for positive response to banded starter
- Soil pH
 - At low pH, K has more competition for CEC sites
 - As soils are limed, greater amount of K can be held on CEC and K leaching reduced.

Environmental Factors Affecting K Availability to a Plant

- Leaching
 - K leaching can occur on course textured or muck soils particularly if irrigated
 - Large fall K applications to sandy or muck soils discouraged

K Sources

Fertilizer	Chemical Formula	Fertilizer Analysis	Salt Index
Potassium chloride (muriate of potash)	KCI	0-0-60 to 0-0-62	116
Potassium magnesium sulfate	K ₂ SO ₄ •2MgSO ₄	0-0-22	43
Potassium nitrate	KNO ₃	13-0-44	74
Potassium sulfate	K ₂ SO ₄	0-0-50	46

Red v. White Potash

- Both mined KCI
- Red potash produced by floatation, 0-0-60
- White potash produced by recrystallization, 0-0-62
- Color due to Fe and Mn impurities
- Use white for liquids
- No agronomic difference

K Sources - Organic

- Break down of crop residue
- Manures
 - Majority of K is soluble
 - 80 % of total K in manure available the year of application
 - 10 % of total K is available 2nd year after application
 - 5 % of total K is available 3nd year after application
 - Book values
 - Dairy solid 9 lb K₂O/ton
 - Dairy liquid 20 lb K₂O/1000 gal
- Biosolids

K Management

K Management in WI

- Many soils deficient
 - Particularly alfalfa rotation
- K important in reduced tillage
- More liquid (low K) starter used
- Topdress K used as insurance
- Excessive K in some forages
- Timing relatively unimportant

Average interactions of soil test K levels and topdressed K₂O rate on alfalfa yields, Arlington, WI, 1994-1997

Response of corn to row-applied K on a silty clay loam soil (3 yr. avg.)

Oshkosh, Wis. (45 lb K₂0/a) Wolkowski, WI

K ₂ O applied	Placement	Corn Yield
(lb/acre)		(bu/acre)
0	_	114
40	Starter (band)	143
100	Broadcast	136
200	Broadcast	141

Soil test (0-6") = 85 ppm; considered medium (optimum) Goodhue County, Minnesota From Rehm & Schmitt, 1997

Tillage and K Placement

Importance of K in Starter Fertilizers

- Response to deep-banded K at high soil tests
 - Ridge-till and no-till
- More frequent starter response at soil test K
 < 140 ppm
- Offset soil compaction effects
 - Restricted root volume
 - Poor aeration limited K uptake
- More consistent starter response

Effect of tillage and soil test K on corn response to starter fertilizer

	Soil test K (ppm)		
Tillage	50-60	100-145	145-190
	Response, bu/acre		
Ridge-till	45	12	3
Chisel	13	7	8
Moldbrd.	20	5	7

Moncrief & Schulte; 8-48-12 starter fert. Arlington, WI

Corn yield advantage of deepbanded K over broadcast or planter-band K

Tillage System	Advantage	
	bu/acre	
Ridge-till	8	
No-till	4-5	
Chisel-disk	2	

Mallarino, Iowa

RESPONSE OF CORN TO TILLAGE AND FERTILIZER PLACEMENT, ARLINGTON, WIS. 2001-2003

Wolkowski, WI

Row K Effects on Corn Yield with Increasing Soil Compaction

Initial K Soil test = 102 ppm (Optimum) Wolkowski, WI

Effect of K Source

Effect of K source on alfalfa yield where fertilizer is applied in split applications

K source	Ashland*	Hancock ⁺	Lancaster +	Manitowoc +	Marshfield*
			Tons/acre		
0	2.42	2.79	3.46	3.71	2.81
KCI	2.57	4.12	3.98	4.33	2.80
KCI + S	2.69	4.02	4.02	4.40	3.08
K ₂ SO ₄	2.44	4.17	4.12	4.36	2.94
K-MgSO ₄	2.46	4.05	4.15	4.48	2.89

^{*} Average of 2 years

Adapted from Kelling, Erickson, and Schulte (unpublished). All plots received 50 lbs P and 400 lbs K/A/yr

⁺ Average of 3 years

K Source Conclusions

- If difference observed, likely due to associated ions
- No difference observed for most uses
- Salt or CI ion problems avoided by splitting applications of rate more than 400-500 lbs/A
- Price, availability, & need for associated ion should determine which used

Timing Questions

Preplant versus topdress?

Frequency of topdress?

Time of year to topdress?

Effect of rate and time of K topdress on alfalfa or alfalfa/orchardgrass yields, Maryland

	K ₂ 0 Rate (lb/a)		
K Timing	0	100	200
		- yield (T/a) -	
Fall	3.63		4.13
Fall/1st cut			4.13
Early spring		3.73	4.23
1st cut		3.90	4.23
Early spring/1st cut		4.10	4.27
Early spring/each cut		3.80	4.13

Adapted from Kresge and Younts, 1962.

Alfalfa response to time of topdress application

Applic. Time	1994	1995	1996	1997
		T/a DM		
Greenup	4.33	4.16	3.06	2.53
1st cut	4.46	4.35	3.17	2.65
3rd cut	4.48	4.27	3.06	2.47
1st & 3rd	4.44	4.35	3.08	2.61
Pr>F	*	0.20	0.78	0.33

^{*}Interaction between time and source significant at Pr≥0.10 Arlington, averaged across 2 soil test K levels and 2 K sources

Interaction between K source and application time, responsive years only

Application	KCI + S	K ₂ SO ₄
	T/a [OM
Greenup	4.10	4.34
1st cut	4.31	4.48
3rd cut	4.27	4.48
1st & 3rd	4.44	4.34

Average 1994-1995 across 2 soil K levels, Arlington

The average effect of soil test K and topdressed K₂O on third cutting forage cation concentrations, Arlington, WI 1994-1997

Rominger et al., 1975

•••

 $\bullet \bullet \bullet \bullet \bullet$

Ways to reduce tissue K

- Soil test
 - Apply K only where needed
 - Credit manure K
- Clip low retain leaves
- Cut later
- Allow K to drop on some fields
- Segregate low K forages for dry cows/heifers

Potassium BMP's

- Use soil test to guide K need
- Wisconsin recommendations call for 15 to 25
 Ib K₂0 with high K soil
- Consider complete starter
- Avoid excessive build-up; distribute manure
- Avoid fall applications on sands and mucks
- Topdress as needed

UW Department of Soil Science

http://www.soils.wisc.edu/extension