What's New in Diagnostic Services?

- New Madison Soil and Plant Analysis Lab ready for occupancy by mid-January, 2004
- On-line information sheets for samples
- Access account information on-line

Current Madison Lab Facility

Building site at West Madison ARS Madison Lab Construction Began in Spring

New Lab at West Madison

On-line submission

Lime Recommendation Terminology

John Peters and Keith Kelling Dept. of Soil Science UW-Madison

Figure 6-2. Active and reserve acidity in soil compared with a poultry watering fountain.

Variability exists between states

• All Midwestern states use a combination of chemical purity and particle size to rate lime

What determines the quality of a liming material

- Purity
 - measure of CaCO₃ equivalency
 - determined in the laboratory
- Fineness a dry sieving process is used
 - exact sieves used vary by state

The purity factor (CaCO₃) Equivalent

Table 6-5. Liming materials and their calcium carbonate (CaCO₃) equivalent

Liming material	Neutralizing agent	CaCO ₃ equivalent of pure material (%)	
Dolomitic limestone	CaCO ₃ •MgCO ₃		
Papermill lime sludge	Mainly CaCO ₃		
Marl	Mainly CaCO ₃	variable	
Calcitic limestone	CaCO ₃	100-	
Water treatment lime waste	CaCO ₃	variable	
Wood ash	K ₂ CO ₃ , CaCO ₃ , MgCO ₃	20–90	
Fly ash	CaO, Ca(OH) ₂ , CaCO ₃	variable	
Hydrated lime	Ca(OH) ₂	135	
Air-slaked lime	Ca(OH) ₂ + CaCO ₃	100–135	

^{*} According to the Wisconsin Lime Law, one cubic yard of papermill lime sludge is equivalent to one ton of aglime having a neutralizing index of 60–69.

Sieves used by state

- Iowa 4, 8, 60 mesh
- Illinois 8, 30, 60 mesh
- Minnesota and Wisconsin 8, 20, 60 mesh
- Michigan 8, 60 mesh

Table 2. Effect of various rates of dolomitic lime sizes on the pH of Withee silt loam

Fraction		S	oil pH*—	
(mesh size)	1 mo	1 yr	2 yr	3 yr
O ton/a lime				
<u></u>	4.96	5.18	5.23	5.30
2 ton/a lime				
20-40	5.04	5.39	5.70	5.91
40-60	5.12	5.52	5.82	6.05
60-100	5.18	5.64	5.94	6.03
< 100	5.44	5.58	5.97	6.03
6 ton/a lime				
8-20	4.98	5.28	5.78	6.10
20-40	5.17	5.66	6.15	6.40
40-60	5.29	5.81	6.40	6.50
60-100	5.33	5.95	6.48	6.60
< 100	5.73	6.19	6.59	6.61
16 ton/a lim	0			
8-20	5.41	5.66	6.24	6.47
20-40	5.35	5.99	6.50	6.71
40-60	5.56	6.10	6.63	6.81
60-100	5.70	6.21	6.73	6.82
< 100	6.17	6.45	6.97	6.98

^{*} Each value represents the average of three replicates. Adapted from Love et al. (1960)

Lime Quality in Wisconsin

- In Wisconsin lime quality is listed by neutralizing index (NI)
 - Fineness factor x Purity factor = NI

LR given for NI of 60-69 and 80-89

Calculating the Neutralizing Index of a liming material

Example 2: Lime B (90% calcium carbonate equivalent)

Screen size	Screen analysis		Effectiveness factor		
	%				
greater than 8 mesh	5.0	x	0.0	-	0.0
8 to 20 mesh	25.0	x	0.2	-	5.0
20 to 60 mesh	20.0	x	0.6	*	12.0
less than 60 mesh	50.0	x	1.0	-	50.0
			Total	-	67.0

 $NI = 67.0 \times 90\% = 60.3$

Reporting terminology

- MN LR in lbs/a of Effective Neutralizing Power (ENP)
- Example a ton of lime with an ENP of 1000 lbs/a is equivalent to a NI of 50

Reporting terminology

- IL LR in tons/a based on Effective Calcium Carbonate (ECC) based on "typical lime".
- MI- LR in tons/a based on their Calcium Carbonate Equivalency (CCE) or Neutralizing Value of 90.
- If the ECC and ECCE is approximately 85, this is nearly equivalent to a NI of 80-89

Summary

- The criteria used by states in the upper Midwest are quite similar
- ECC or ECCE of 85 = NI of 80-89
- ENP value (per ton)/ 20 = WI NI value

Corn Response to Liming

Effect of soil pH on avg. alfalfa yields at Marshfield (avg. of 1980-1981; sum of 2 cuttings each year).

Mn toxicity at low pH levels

Figure 6-8. The influence of soil pH on the concentration of manganese in alfalfa tissue (Marshfield, WI). Source: Schulte, E.E. 1982. Unpublished data.

pH Influence on Alfalfa Stand

Figure 6-4. Effect of soil pH on establishment and persistence of alfalfa in Withee silt loam (Marshfield, WI). Adapted from Proc. 1981 Fert., Aglime & Pest Mgmt Conf. 20:77–85

Soil pH Effect on Soybeans

Figure 6-6. Effect of soil pH on soybean yield and protein (Marshfield, WI). Source: Gritton et al., 1985. Proc. 1985. Fert., Aglime & Pest Mgmt. Conf. 24:43–48.

Soil pH influence on root rot of Snapbeans

Figure 6-7. Relationship between soil pH, snapbean yield, and root rot (Hancock, WI). Source: Schulte, E.E. 1987. Proc. Processing Crops Conf. Dept. of Hort., UW-Madison.

Date of silking as affected by pH

Marshfield Grain

Marshfield Silage

Spooner Grain

Spooner Silage

Arlington Grain

Hancock Grain

Hancock Silage

Hancock Sweet Corn

Earleaf Mn content at silking

Summary of corn response to liming

- Central and northern silt loam and sandy loam soils show little yield benefit to liming above pH 6.5
- Influence on maturity may be a factor on somewhat poorly drained soils
- Little response seen on the sandy soils or the southern silt loams— Mn toxicity is less of a concern on these soils