Managing Carbon in Wisconsin Soils

Dick Wolkowski Extension Soil Scientist UW-Madison

Carbon: The key element for life

Outline:

- The "ultimate" essential plant nutrient needed for life as we know it
- Soil C and organic matter basics
- Tillage impacts on soil organic matter
- Potential impacts of biofuel production on soil C

Carbon: The key element for life

Carbon:

- Forms both the hardest and one of the softest minerals on earth
 - Diamond used as an abrasive
 - Graphite used as a lubricant
- Fourth most abundant element in the universe (H, He, O)
- Bonds to itself in a myriad of configurations to form over 10,000,000 different molecules
- Cycled through variety of phases
 - Solid (cellulose)
 - Liquid (gasoline)
 - Gas (carbon dioxide)

Why worry about soil carbon: C is a major component of the soil organic matter

- Energy source for microorganisms
 - Nutrient cycling
 - Residue decomposition
- Improves aggregation
 - Aeration, drainage, erosion, tilth, etc.
- Storehouse for nutrients
 - Included in organic structure
 - Held on exchange sites
- C is sequestered in organic matter
- Interacts with environmental contaminants

What is soil organic matter

"The fraction of soil composed of anything that once lived"

- Consists of
 - Plant and animal remains in various stages of decomposition
 - Living soil organisms
 - Root and microbial exudates/waste products
- Not all the same
 - Labile (active)
 - Stabile (recalcitrant)
- Need continuous additions from crop residue, roots, and amendments

Labile or biologically active

- Living or microbial biomass
 - One gram of soil contains:
 - >100,000,000 bacterial cells
 - >16,000 species of bacteria
- Macro-organic matter
- Polysaccharide molecules
- Mostly involved in decomposition; energy and nutrient cycling

FIGURE 4.3 Size classification of organisms in decomposer food webs by body width (Swift *et al.*, 1979).

Stabile or recalcitrant organic matter

Humus

- Very well decomposed
- Dark, porous and spongy
- No definite chemical structure
- Resistant to decay
- Age measured in decades/centuries
- Contributes to structural development, CEC, and affects compounds added to the soil
- Relatively constant content for a soil

Long-term studies assess N effect on soil organic matter management

(Vanotti et. al., 1997)

Arlington

- Established 1958
- Continuous corn
- History of residue burning
- Three N rates
 - None
 - **50-75** %
 - **150 %**

Lancaster

- Established 1967
- Several rotations
- Previous alfalfa history
- Four N rates
 - 0 300 through '77
 - 0 200 since

Arlington Long-Term N Study

Effect of N fertilization on soil C accumulation, Arlington, 1958 - 1983

Treatment	Biomass		Total C (above ground)	Soil C
	t/a/yr		t/a	%
	Grain	Stover		
No N	1.7	2.6	30	2.0
50 – 75 %	3.0	3.4	41	2.2
150 %	3.1	3.6	42	2.2

Initial soil C = 1.9 %

Effect of N fertilization on soil C accumulation, Lancaster, 1967 - 1989

Treatment	Biomass		Total C (above ground)	Soil C
lb N/a	t/a/yr		t/a	%
	Grain	Stover		
No N	1.5	2.4	25	1.4
50 or 75	2.7	3.3	34	1.2
100 or 150	3.1	3.5	37	1.4
200 or 300	3.3	3.7	38	1.3

Tillage effect on soil organic matter

(adapted from Al-Kaisi and Licht, 2005)

Effect of 10 years of tillage and rotation on soil organic matter, Arlington, 2007

(Incremental sampling @ 2")

Effect of 10 years of tillage and rotation on soil organic matter, Arlington, 2007

(Averaged over 0 - 8")

Effect of tillage and corn management on soil C cycling (Hooker et. al. U-Conn.)

- Moldboard or No-till
- Harvested for silage or grain
- Field created from forested land in 1957 and in continuous corn with the tillage/harvest systems since 1972
- Until 1972 C inputs were as C3-C; whereas corn is a C4-C plant
- Utilize ¹³C analysis to evaluate cycling

Effect of tillage and corn management on soil C amount over 28 years (Hooker et. al. U-Conn.)

Effect of tillage and corn management on soil C partitioning (Hooker et. al. U-Conn.)

Tillage	Corn Mgt.	C4-C	C3-C Half-life
		%	years
NT	Grain	42	19
NT	Silage	35	18
MB	Grain	32	15
MB	Silage	27	14

Effect of tillage and corn management on soil C partitioning (Hooker et. al. U-Conn.)

Tillage	Corn Mgt.	C4-C	C3-C Half-life
		%	years
NT	Grain	17	57
NT	Silage	13	61
MB	Grain	24	32
MB	Silage	21	24

Current challenges of bio-energy production on soil organic matter

- Corn ethanol is currently driving corn production
- Question of alternative methods
 - Cellulosic ethanol
 - Wind
 - Solar
- UW-CALS bio-energy initiative

Estimated ethanol from biomass (Jeffries, USDA-FPL)

Biomass Source	Ethanol Produced
Agricultural Residues	20 - 25 B gal (conserv.) 36 - 45 B gal (optim.)
Energy Crops	33 - 61 B gal
MSW	5 - 10 B gal
Forestry/Mill Waste	0.5 - 1.0 B gal
Total (average)	66.5 – 107 B gal

Grain ethanol: ~ 13 B gal by 2009; 100 % grain use = 15% current fuel use

Concerns with using corn residues for bio-energy

(Blanco-Canqui and Lal, OSU)

- Long-term no-till: Removed 0, 25, 50, 75, and 100 % of stover after grain
- Three Ohio locations
- Removing > 50 % reduced soil C and grain yield by ~ 30 bu/a on one site
- Removing > 25 % reduced infiltration on two sites
- Removing > 50 % reduced PAW and earthworms on all sites.
- Recommend limiting stover removal to < 25 %

Many produces already chop stalks for bedding

Current practice leaves a considerable amount of stover (> 50 %?)

Removing stover also removes nutrients (Sawyer and Mallarino, ISU, 2007)

Elemental composition of corn stover and cobs

Crop component	N	P ₂ O ₅	K ₂ O	Ca	Mg	S
	lb/ton DM					
Stover	20	4	35	11	8	3
Cobs	8	2	20	2	1	9

What is Switchgrass?

Warm season perennial grass (Panicum virgatum)

Source: http://www.iowaswitchgrass.com/benefits~onfarmbenefits.html

Karl Green, LaCrosse County CNRED Agent, 2007

Benefits of Switchgrass?

Karl Green, LaCrosse County CNRED Agent, 2007

- Dominant native species found on native North American plains/prairies of Canada & United States
- Attains reasonable yields w/o high rates of nitrogen fertilizer (low inputs)
 - Cost component
 - Groundwater component
- Longevity of Crop
 - Approximately 10 years
- Adapts to numerous soil/climatic conditions, therefore can be introduced onto marginal cropland
 - Converting row crops to perennial grasses may increase soil stability
 - Carbon sequestration in root mass and stubble
- Excellent burn qualities
 - Can be co-fired w/ certain coal plants
 - This creates an immediate end use (market) for crops, allowing establishment of crops as cellulosic technology develops

Soil under switchgrass stores more C

Readily oxidizable C H₂O₂ added

Arlington Research K. Shinners, BSE

Potential soil (pheasant) loss from converting CRP to corn

Estimated soil and P loss from CRP conversion to corn

(Panuska et al., 2007)

Estimated Soil Conditioning Index for CRP conversion to corn

(Panuska et al., 2007)

Summary

- Soil organic matter is important
- Practices that maintain or build SOM should be encouraged
- Follow conservation plans and strive to reduce tillage intensity
- Return crop residues when possible
- Carefully consider impact of converting CRP
- Crop production for bio-energy may hurt or help soil quality