MANAGING UREA-CONTAINING FERTILIZERS

Larry G. Bundy
Department of Soil Science
University of Wisconsin

OVERCOMING NITROGEN VOLATILIZATION LOSSES

Larry G. Bundy
Department of Soil Science
University of Wisconsin

Nitrogen Fertilizer Use in Wisconsin, 1984 and 2000.

	Tons of N (1000's)		% of	N use
N source	1984	2000	1984	2000
NH ₃	75	41	44	25
Urea	45	63	27	38
UAN	50	61	29	37
Total	170	165		

N fertilizer use in Wisconsin (tons of materials)

Reactions of urea in soil

Equation 1.

Urea Hydrolysis

$$(NH_2)_2CO + 2H_2O \xrightarrow{Soil} (NH_4)_2CO_3$$
Urea Water Ammonium Carbonate

Equation 2.

$$(NH_4)_2CO_3 + 2H^+ \longrightarrow 2NH_4^+ + CO_2 \uparrow + H_2O$$

Ammonium Ammonium Carbon Water
Carbonate Dioxide (gas)

Equation 3.

$$NH_4^+$$
 + $OH^- \longrightarrow NH_3$ † + H_2O
Ammonium Hydroxyl Ammonia Water

Rates of urea hydrolysis in a silt loam soil at three temperatures

Change in soil pH in a urea-treated silt loam at two temperatures

Soil pH effects on percentages of N present as ammonia and ammonium

	Ammoniacal N		
Soil pH	Ammonia	Ammonium	
		%	
6	0.058	99.94	
7	0.57	99.43	
8	5.4	94.6	
9	36.5	63.5	

Ammonia Volatilization Losses

- Urea and urea-containing fertilizers
- Surface applications only
- Tillage or rain in 2-3 days controls loss
- Large losses are rare
- Maximum loss = 20-30 % of N

Factors Favoring Ammonia Loss

- No rain or irrigation after application
- Crop residue on the soil surface
- High temperatures
- High soil pH
- Low clay & organic matter (low CEC)
- Initially moist soil followed by drying

Extent of Ammonia Volatilization Losses

Effect of ammonia loss from surface-applied fertilizers on corn yield, Lancaster, WI

N source	Ammonia loss	Yield	
	(%)	(bu/acre)	
None		83	
Urea	16	122	
UAN solution (28%)	12	125	
Ammonium	2	132	
nitrate			

Oberle & Bundy, 1988. Data from one of four experiments.

Effect of ammonia loss from surface-applied fertilizers on grass pasture yield, Lancaster, WI

N source	Ammonia loss	Yield
	(%)	(tons/acre)
None		0.74
Urea	19	1.09
Ammonium	1	1.30
nitrate		

Oberle & Bundy, 1988. N rate = 60 lb N/acre.

Nitrogen Source and Management Comparisons

Nitrogen Source Comparisons in No-till Corn

Nitrogen source and placement effects on no-till corn yield and ear leaf N concentration¹

Treatment	Yield	Ear leaf N
	bu/acre	%
Ammonia, inj.	138	3.06
UAN injected	135	2.85
UAN surface	118	2.48
Urea surface	123	2.57

¹ Ave.of seven expts. Mengel et al., 1982 (Indiana)

Effect of N source and application method on corn yield, Janesville and Winnebago, WI¹

	Yield		
Application method	Winnebago	Janesville	
	bu/acre		
UAN surface broadcast	163	146	
UAN surface band	153	139	
Anhydrous ammonia	165	146	

¹ Bundy et al., 1992. Yields are means of 3 yr, 2 N rates, and 4 tillages

Effect of N source & application method on corn yield, Arlington, WI¹

	Year		
N source & method	1993	1994	1995
		bu/acre -	
Ammonium nitrate	118 a	177 a	163 a
UAN spray	94 bc	140 b	152 a
UAN spray + rain	105 ab	139 b	159 a
UAN sprinkle	86 bc	148 b	
UAN injected			157 a
Urea	83 c	155 b	160 a

¹Bundy & Andraski, 1997, Rain = 0.5 inch

Treatments in Nitrogen-Residue Decomposition Study

- Times and rates of N (UAN and ammonium sulfate)
- Sulfur as gypsum applied to equalize sulfur
- Treatments applied to residue of previous corn crop.

Nylon mesh bag for residue quantity & composition measurements

Nitrogen timing, source, & rate effects on corn grain yield, Arlington, 1999-2001

N timing & ra	ate (lb N/acre)	Yield 1999	Yield 2000	Yield 2001
Fall	Spring		bu/acre	
0	0	167 b	63 e	105 e
30 UAN	160 UAN	219 a	146 abc	191 b
30 AS	160 AS	220 a	158 a	202 ab
0	190 UAN	219 a	148 ab	194 b
0	190 AS	216 a	160 a	208 a
100 AS	90 UAN	220 a	136 bc	207 a

Nitrogen Source and Management Comparisons

Urease Inhibitors to Control Ammonia Loss

Urease Inhibitor

N-(n-butyl) thiophosphoric triamide (NBPT)

Commercial product - Agrotain

Soil Urease Inhibition

Urea Ammonium NH₃
Carbonate Ammonia
Inhibitor
action

Grain yield increase from use of a urease inhibitor with urea-containing fertilizers

Experimental	No.of	Yield i	ncrease
sites	sites	Urea	UAN
		bu/	acre
All sites	78	4.3	1.6
N responsive	64	5.0	2.8
Significant	59	6.6	2.7
NH ₃ loss			

¹/₂ Hendrickson, 1992

Nitrogen Source and Management Comparisons

Winter Applications of Urea

Effect of nitrogen source, time, and rate on corn yield, Illinois¹

Nitrogen trea	itment		Nitroge	en rate	
Source/method	Time	0	120	180	240
			Yield (t	ou/acre)	
None (control)		89			
Urea/surface	Winter		94	123	126
Urea/Incorp.	Spring		140	157	165
Anhydrous ammonia	Spring		149	157	158

¹ Illinois Agronomy Handbook, 2001-2002.

Nitrogen Source and Management Comparisons

Preplant Urea Applications on Sandy Soils

Effect of N source and timing on corn yield, Hancock, WI (2-yr ave.)

		Prep	olant
N rate	Inhibitor	Urea	NH_3
lb/acre		bu/	acre
0		3	5
70	-	61	87
	+	80	99
140	-	101	124
	+	109	134
210	_	98	142
	+	119	137

Effect of N source and timing on corn yield, Hancock, WI (2-yr ave.)

		Side	dress
N rate	Inhibitor	Urea	NH_3
lb/acre		bu/	acre
0		3	5
70	-	99	89
	+	106	104
140	_	127	127
	+	129	125
210	_	135	137
	+	142	133

Summary

- Urea-containing fertilizers are widely used (75-80% of the N in Wisconsin).
- Ammonia loss can occur from surface applied urea fertilizers
- Soil and climate factors influence ammonia loss.
- Maximum losses seldom exceed 20% of applied N.

Summary

- N source comparisons sometimes show better performance with non-urea materials
- Factors other than ammonia loss may contribute to these results.
- Urease inhibitors can reduce ammonia loss from urea fertilizers.
- Economic benefits from inhibitors is uncertain.

Summary

- Winter applications of urea on frozen soils subject to N losses
- Preplant applications of urea on sandy soils should be avoided

Controlling Nitrogen Volatilization Losses

- Incorporate or inject ureacontaining fertilizers
- Use non-urea N sources for surface applications
- Consider a urease inhibitor where risk of volatile loss is high

Corn Yield with surface applied N sources, Lancaster, WI

Ammonia Volatilization

Effect of N source and timing on corn yield, Hancock, WI

		Preplant		Sideo	Sidedress	
N rate	Inhibitor	Urea	$\overline{NH_3}$	Urea	NH ₃	
lb/acre		bu/acre				
0		35				
70	-	61	87	99	89	
	+	80	99	106	104	
140	-	101	124	127	127	
	+	109	134	129	125	
210	-	98	142	135	137	
	+	119	137	142	133	

Plant Nutrient Consumption in the USA. (1960-2000)

