Recommended Methods for Manure Analysis:

John B. Peters
Soil Science Department
University of Wisconsin – Madison

Background

- Multi-regional committee was established in September 1996 to work on the development of a manual for manure sampling, analysis and reporting.
- Committee members from NCR-13, SERA-6, NEC-67, and MN Dept. of Agriculture
- Publication is available on the web

http://uwlab.soils.wisc.edu/pubs/A3769.pdf

Available Now

http://uwlab.soils.wisc.edu/pubs/A3769.pdf

Introduction

- Nutrient concentrations can be estimated using "book" values for available N, P2O5, and K2O
- Manure testing takes management practices into account and delivers more accurate values
- Sampling technique greatly influences test results
- Sample handling and testing methods also affect analytical results

Table of Contents - 1

Introduction
Unit Sampling Livestock Waste for Analysis
1. Introduction1
2. Sampling livestock waste
Table 1. Comparison of analyzed manure total nutrient concentrations to "typical" nutrient concentrations
2.1 Technique
2.2 Time
2.3 Storage management
3. Sampling recommendations3
4. Recommended procedures for sampling live-
stock waste for analysis3
4.1 Solid manure—dairy, beef, swine, poultry 3
4.2 Liquid manure—dairy, beef, swine 3
4.3 Sample identification and delivery4
5. References4

Comparison of analyzed and "typical" manure nutrient content

Range of analyzed manure nutrient content

Effect of In-Lab Variability on Total Nutrient Content of Manure

	No. of				Nutrient*	
Material	Analysis		DM	N	P	K
	-				%	
Liquid Dairy	4	Mean	7.13	4.25	1.04	3.63
Manure #3		SD	0.08	0.09	0.03	0.04
Liquid Dairy	4	Mean	6.05	4.65	1.28	4.07
Manure #4		SD	0.09	0.05	0.05	0.04

^{*} Dry Weight Basis, University of Wisconsin Soil and Forage Analysis Lab - Marshfield

Effect of In-Lab Variability on Total Nutrient Content of Manure

	No. of				Nutrient*	
Material	Analysis		DM	N	P	K
_					%	
Poultry (fresh)	8	Mean	28.14	6.31	1.76	3.08
(IICSII)		SD	0.15	1.12	0.04	0.05
Dairy semi-solid	8	Mean	14.14	3.75	0.83	3.27
(fresh)		SD	0.14	0.26	0.02	0.03

^{*} Dry Weight Basis, University of Wisconsin Soil and Forage Analysis Lab - Marshfield

Nutrient Variability of Solid Dairy Manure.* Marshfield, 1997

Sampling	No. of				Nutrient*	*
Method	Analysis		DM	N	P	K
_					%	
Barnyard - Hand	6	Mean	35.02	1.87	0.42	2.48
Trand		SD	2.81	0.22	0.04	0.27
Barnyard -				2.10	2.70	
Shovel	7	Mean	31.37	2.10	0.50	3.45
Shovel		SD	4.50	0.40	0.09	1.16

^{*} Wisconsin Farm Training Instructions used in this study.

^{**} Dry matter basis

Nutrient Variability of Solid Dairy Manure.* Marshfield, 1997

Sampling	No. of				Nutrient*	*
Method	Analysis		DM	N	P	K
_					%	
Spreader -	6	Mean	34.35	1.98	0.42	2.60
Hand		SD	1.41	0.17	0.03	0.39
Spreader -	6	Mean	34.60	1.98	0.41	2.30
Shovel		SD	4.82	0.31	0.04	0.31

^{*} Wisconsin Farm Training Instructions used in this study.

^{**} Dry matter basis

Effect of Agitation on Analysis of Liquid Manure

Minnesota					
				Nutrient	
Animal	Loads From				
System	Storage	DM	N	P_2O_5	K ₂ O
		%	lbs/1000 gal		
Dairy -	First	8.2	34	16	28
Metal Tank	Mid	8.6	33	18	28
	Last	8.0	30	14	27
Swine -	First	6.9	45	50	15
Concrete Pit	Mid	8.5	46	60	16
	Last	7.4	46	57	18

Effect of Agitation on Analysis of Liquid Manure

Animal	Loads From			Nutrient	
System	Storage	DM	N	P_2O_5	K ₂ O
Minnesota		%		lbs/1000 ga	[
Dairy -	First	4.4	24	10	23
Earthen Pit	Mid	6.0	23	10	22
	Last	8.7	27	12	23
Wisconsin*					
Dairy -	Early**	6.1	24	15	23
Earthen Pit	Late**	7.1	25	14	25

^{*} Dairy milking herd, Marshfield Agricultural Research Station

^{**} Average of four-subsample analysis

Nutrient Variability of Liquid Dairy Manure.* Marshfield, 1997

Sampling	No. of				Nutrient*	*
Method	Analysis		DM	N	P	K
_					%	
Pump - Direct	8	Mean	5.11	4.66	1.27	5.23
Direct		SD	0.08	0.32	0.09	0.66
D :1						
Pail - Subsample	4	Mean	5.2	4.8	1.30	5.15
		SD	0.06	0.10	0.03	0.23

^{*} Wisconsin Farm Training Instructions used in this study.

^{**} Dry matter basis

- Sampling while loading
 - Take samples from several spreader loads
 - Combine samples to form one composite sample

- Sampling during spreading
 - Catch manure from one pass on a tarp in field
 - Sample from several locations to create a composite sample

- Sampling daily haul
 - Place five-gallon
 bucket under the barn
 cleaner 4-5 times while
 loading spreader
 - Repeat sampling 2-3
 times and test separately

- Sampling stockpiled manure
 - Take ten subsamples from different locations around the pile at least 18 inches below surface
 - Mix thoroughly in a five-gallon pail

- Sampling poultry in-house
 - Collect ten samples from throughout the house to the depth litter will be removed
 - Sample near feeders and waterers proportionately to their space occupied in the whole house
 - Mix samples well in a fivegallon pail

Sampling Procedures: Liquid Manure

- Sampling from storage
 - Agitate storage facility thoroughly (2-4 hrs minimum)
 - Collect at least five samples from storage facility or during loading using a five gallon pail

Sampling Procedures: Liquid Manure

- Sampling during application
 - Place buckets around field to catch manure from spreader or irrigation equipment
 - Combine and mix samples

Effect of Sampling Time on Content of Laying Hen Manure

			Nutrient**				
Month*	DM	P_2O_5 K_2O					
	%	lbs/ton					
March	28.1	36	23	20			
August	20.0	25	7	14			

^{*} Average of four-subsample analysis

^{**} Laying hen barn, University of Wisconsin Arlington Agricultural Research Station

Table of Contents – Lab QA/QC

Unit II Laboratory Quality Assurance Program5
1. Introduction5
2. Components of a quality control program
Table 2. Known sources of error in manure testing
3. Assessment of quality control6
3.1 Measuring and documenting bias6
3.2 Documenting accuracy7
Table 3. Suitable standard reference materials for manure analysis 8
3.3 Documenting precision9
3.4 Known vs. blind checks
4. Statistical control and control charts 9
4.1 X-charts10
4.2 R-charts10
4.3 Establishing control limits11
4.4 Reporting11
5. References

Quality Assurance

- Ensures consistent quality of analytical results through the application and documentation of appropriate quality control and quality assessment procedures
- Serves to promote client confidence in analytical results and documenting analytical uncertainty.

Quality Control

- Comprised of laboratory practices undertaken specifically to achieve accurate and reliable analytical results.
- Quality assessment is comprised of the procedures undertaken to monitor and document the effectiveness of quality control practices.

Components of a Quality Control Program

- Documentation of SOP (standard operating procedure)
- Training
- Implementation of good laboratory practices and procedures

Components of a QA/QC Program

- Document precision
- Document accuracy
- Known vs. blind checks
- Control charts
 - X-charts accuracy and precision
 - R-charts replicate range

X - Charts

R - Chart

Table of Contents – Lab Procedures

Sample handling 1.1 Introduction	2
Recommended sample handling protocols	2
Recommended sample handling protocols	2
protocols	
[[] 14일 (HT) 기계	-
Sample receiving, examination and	2
transfer1	-
Sample stabilization and storage 12	2
Table 4. Maximum Holding Times for	
Manure at 4° C Before Specific	220
Analyses	
4. Sample holding times	
Homogenizing and sub sampling 1	
6. Archiving and disposal	
1.3 References	3
2. Dry matter analysis	4
2.1 Laboratories use many methodologies 14	4
2.2 Principle of the method	5
2.3 Apparatus	5
2.4 Procedure1	5
1. Sub sampling and sample size1	5
2. Times and temperatures1	5
Table 5. Maximum fresh sample size for	
dry matter determination in open vessels 1	3
3. Weighing	3
2.5 Calculations	3
2.6 Precision and accuracy	7
1. Precision	7
2. Accuracy	7
2.7 References	7

Sample Handling

- Biohazards and laboratory safety
- Sample receiving, examination and transfer
- Sample stabilization and storage
- Sample holding times
- Homogenizing and subsampling
- Archiving and disposal

Sample Holding Times

Table 4. Maximum holding times for manure at 4° C before specific analyses.

рН	7 days
Dry matter/Total solids	7 days
Total nitrogen/Kjeldahl nitrogen	7 days
Ammonia nitrogen	7 days
Electrical conductivity	6 months
Minerals— Total P, K, Ca, Mg, Cu, Zn	6 months

Dry Matter Analysis

Sample size for DM analysis

Table 5. Maximum fresh sample size for dry matter determination in open vessels

	Dryi	ng temperat	ure
Drying Time	50°C	70°C	110°C
6 hr	Not recommended	5 g	10 g
16 hr	5 g	10 g	20 g
24 hr	10 g	20 g	20 g

Dry Matter Effect on Calculated Manure Nutrient Content

		Nutrient*				
DM%	N	$N P_2O_5$				
		lbs/wet ton				
12	7.2	5.5	11.5			
15	9.0	6.9	14.5			
10	10.0	0.2	17.0			
18	10.8	8.3	17.3			

^{*} Based on dry matter analysis of 3.00% N, 1.00% P and 4.00% K

Suggested Minimum Drying Times at Various Temperatures

	Temperature					
	50 C	70 C	110 C			
		hours				
Solids (<85% H ₂ O)	24	16	6			
Liquids (>85% H ₂ O)	48	48	16			

Table of Contents – Total N

3. Total nitrogen
3.1 Introduction
3.2 Total Kjeldahl Nitrogen
1. Principle of the method18
2. Operational considerations19
3. Safety19
4. Quality control and quality assurance19
5. Macro-Kjeldahl (adapted from Kane, 1998)
6. Micro Kjeldahl Analysis using a block digester (adapted from Isaac and Johnson, 1976)
3.3 Total nitrogen by combustion
(adapted from AOAC 990.3)
1. Introduction
2. Principle of the method23
3. Apparatus23
4. Reagents and reference standards23
5. Procedure
6. Quality control24
7. References

Laboratory Methods of Analysis

- Total Nitrogen determination
 - Kjeldahl
 - Advantages low cost, large samples, wet or dry
 - Disadvantages strong chemicals, labor intensive
 - Combustion
 - Advantages fast and automated, no strong acids,etc.
 - Disadvantages high cost of equipment and maintenance and small sample size requirement

Ammonium Nitrogen

4. Ammonium Nitrogen					.20
4.1 Ammonium-N determination by dist					25
(adapted from AOAC 973.49 & EPA					1000
Principle of the method					
2. Apparatus					
Reagents and materials				٠	.25
4. Procedure					.25
5. Calculations					.26
6. Quality control					.26
4.2 Ammonium-N determination by ele					
(adapted from Standard Methods fo	r t	he			
Examination of Water and Wastewat					name
Method 4500-NH3F)	٠				.26
1. Principle of the method			0		.26
2. Apparatus					
3. Reagents					.27
4. Procedure					.27
5. Calculations					.27
6. Quality control					
7. References					
4.3 Ammonium-N by colorimetry using					
autoAnalyzer (adapted from USEPA			1	.2	
and ISO 11732)					28
1. Principle of the method					
2. Apparatus					
3. Reagents					
4. Procedure					
5. Calculations					
6. Quality control					
7. References		•	•	•	29

Ammonium Nitrogen Methods

- Distillation
- Electrode
- Colorimetry using an autoAnalyzer

Table of Contents – Digestion and Dissolution

5. Digestion and dissolution methods for
P, K, Ca, Mg and trace elements30
5.1. Introduction
5.2 Dry ashing (adapted from—
AOAC 985.01)30
1. Principle of the method30
2. Apparatus
3. Reagents and materials31
4. Procedure
5. Calculations
6. References
5.3 Microwave-assisted acid digestion (adapted from EPA 3051)
1. Principle of the method32
2. Apparatus
3. Reagents
4. Procedure
5. Calculations
6. Quality control
7. References
5.4 Nitric and hydrochloric acid digestion with peroxide (adapted from EPA 3050) 35
1. Principle of the method
2. Apparatus
3. Reagents
4. Procedure
5. Calculations
6. Quality control
7. References
5.5 Nitric acid digestion with peroxide using
a block digester36
1. Principle of the method36
2. Apparatus
3. Reagents and reference standard37
4. Procedure
5. Calculations
6. Quality control
7. References

Digestion and Dissolution Methods

- P, K, Ca, Mg & trace minerals
 - Digestion
 - Dry Ashing
 - Microwave assisted acid digestion
 - Nitric and hydrochloric acid digestion with peroxide
 - Nitric and hydrochloric with block digester

Table of Contents – Mineral Analysis

6.	Methods of Determination of P, K, Ca,
	Mg and Trace Elements39
	3.1 Introduction39
•	3.2 Atomic absorption spectroscopy
	(adapted from EPA 7000a)39
	1. Principle of method39
	2. Sample handling and quality control40
	3. Apparatus
	4. Procedures41
6	3.3 Inductively coupled plasma spectroscopy
	(adapted from EPA 6010a)41
	1. Principles of method
	Table 6.3-1. Inductively coupled plasma – atomic emission spectrometry detection limits in water (Soltanpour et al., 1996)
	2. Sample handling and quality control42
	3. Apparatus
	Table 6.3-2. Inductively coupled plasma-
	atomic emission spectrophotometry wave-
	length table for use with manure digests.
	Wavelengths (nm) for each element are list- ed. Soltanpour et al., 1996.
	4. Procedures43
6	5.4 Colorimetric method for phosphorus
	(adapted from Standard Methods for the
	Examination of Water and Wastewater, Method
	4500-P)
	1. General principles43
	Sample handling and quality control44
	Vanado-molybdophosphoric acid
	method44
	4. Ascorbic acid method
	5. Reagents
	6. References

Methods of Determination for P, K Ca, Mg and trace elements

- Atomic absorption spectrophotometer
- Inductively coupled plasma spectroscopy
- Colorimetric method for P

Table of Contents – pH and EC

7. Determination of manure pH48
7.1 Introduction
7.2 Principle of the method48
7.3 Apparatus
7.4 Reagents
7.5 Procedure
1. Liquid manure
2. Semi-solid or solid manure
7.6 Quality control
7.7 References
8. Determination of manure electrical
conductivity (EC)50
8.1 Introduction
8.2 Principle of the method50
8.3 Apparatus
8.4 Reagents50
8.5 Procedure
1. Liquid manure50
2. Semi-solid or solid manure50
8.6 Comments
8.7 Quality control
8.8 References

Table of Contents - Reporting

UNIT IV Reporting Manalysis Results	
1. Introduction	
2. Considerations for reported results	
3. Guidelines for reporting results	n
4. References	
Example laboratory report only, no interpretive information	SECOND SE
Example laboratory repointerpretive information)	rt 2 (analysis results plus

First year availability assumptions – Use the values appropriate for your state Example - Wisconsin

- N Variable; Dependant on animal species and type of application
- $P_2O_5 60\%$
- $K_2O 80\%$
- S 60%

Samples Analyzed By: UW Soil & Forage Analysis Lab 8396 Yellowstone Dr Marchfield, WI 54449 (715) 387-2523

WASTE ANALYSIS REPORT

Cooperative Extension. UW - Extension UW- Medison Boils Dept, Madison, WI.

Account#: 555901 Lab Number: Date received: 0/25/02

8/25/02 Client: UW Soi & Forage Analysis Laboratory County: Wood Date processed:

Send to:

UW Soil & Forage Analysis Laboratory

8396 Yellowstone Drive Marshfield, WI 54449

Sample Information

Sample Name:

Material: Dairy Type of Storage: Lagoon

Storage System: Type of Bedding: Liquid

Comments:

Laboratory Analysis

Moisture: 95.20 %

Dry Matter: 4.80 %

	Total Nutrients lbs/1000 gal	of Application Ibs/1000 gal	Consecutive Yrs bs/1000 gal	Consecutive Yrs ibs/1000 gal
Total Nitrogen (Injected)	27.09	10.84	13.55	14.90
Total Nitrogen (Surface Applied)	27.09	8.13	10.84	12.19
Total Phosphorus as P205	15.51	9.31	10.86	11.63
Total Potassium as K2O	28.68	22.94	25.81	27.25
Sulfur	1.27	0.70	0.83	0.89

Estimated Value of Available Nutrients in Surface Applied Manure 1 \$8,43 \$7.08

Additional Tests

Additional Information

NH4-N

1 Value based on commercial fertilizer costs as of 3/1/2002:

N (urea) \$0.21/lb

\$9.10

Ash

P2O5 (Triple Superphosphate) \$0.24/lb

K-0 (Potash) \$0.13/lb

Estimated Available Nutrient Credits for Manure

S (Elemental Sulfur) \$0.23/lb

Samples Analyzed By: UW Soil & Forage Analysis Lab 8396 Yellowstone Dr Marchfield, WI 54449 (715) 387-2523

WASTE ANALYSIS REPORT

Cooperative Extension UW- Exersion UNF- Madison Soils Dopt, Madison, Wi

Date received: 9/25/02 Account#: 555901 Lab Number:

9/25/02 Client: UWSoil & Forage Analysis Laboratory County: Wood Date processed:

Send to:

UW Soil & Forage Analysis Laboratory 8396 Yellowstone Drive Marshfield, WI 54449

Sample Information

Sample Name: #1

Material: Dairy Type of Storage: Stack

Storage System: Solid Type of Bedding: hay/straw

Comments:

Laboratory Analysis

Moisture: 81.50 % Dry Matter: 18.50 %

	Total Nutrients ibs/ton	In 1st Year of Application batton	If Applied 2 Consecutive Yrs lbs/fon	If Applied 3 Consecutive Yrs lbs/ton
Total Nitrogen (Injected)	11.50	4.60	5.75	6.33
Total Nitrogen (Surface Applied)	11.50	3.45	4.60	5.18
Total Phosphorus as P206	5,75	3.45	4.03	4.31
Total Potassium as K2O	11.32	9.06	10.19	10.75
Sulfur	0.51	0.28	0.33	0.36
Estimated Value of Available Nutrients in Surface Applied Manure ¹		\$2.79	\$3.33	\$3.60

Additional Tests

Additional Information

NH4-N

1 Value based on commercial fertilizer costs as of 3/1/2002: N (urea) \$0.21/lb

P₂O₅ (Triple Superphosphate) \$0.24/lb

Estimated Available Nutrient Credits for Manure

Ash

K₂0 (Potash) \$0.13/lb S (Elemental Sulfur) \$0.23/lb

Summary

- The value of manure testing is highly dependant on sampling technique
- Laboratory methods a variety of methods seem to be acceptable for N, P and K
- Standardizing dry matter analysis methods is important for calculating proper nutrient credits of fresh (as applied) manure