How Much Land Will Be Needed for Manure Disposal in a Changing Regulatory Climate?

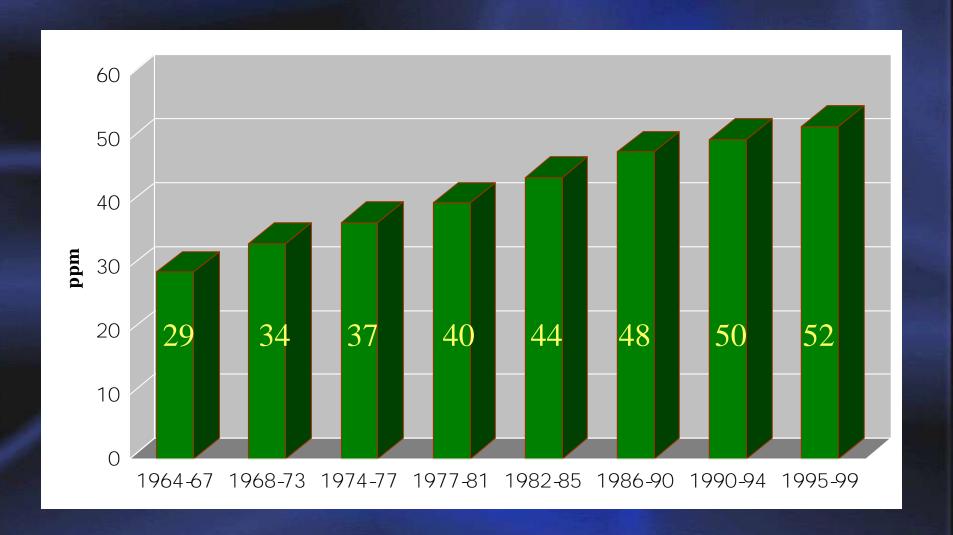
Keith A. Kelling

Department of Soil Science University of Wisconsin-Madison Historically applied manure to meet crop N needs

- **>**Issues
 - ►N to P ratio
 - ➤Soil P build-up
 - >P and water quality
 - > Field P variation

Available nutrient content from dairy manure

	N	P ₂ O ₅	K ₂ O
Solid (Ib/ton)	(surface/incorpor 3 / 4	ated)	8
3011d (10/1011)	J / 4	J	O
Liquid (16/1,000	gal) 8 / 10	8	21


Recommended crop nutrient applications for corn grain at optimum soil test levels.

		Ν	P_2O_5	K ₂ O
			lb/	a/yr
Corn	(@ 200 bu/a)	160	75	55
Corn	(@ 160 bu/a)	160	60	45
Corn	(@ 120 bu/a)	160	45	35

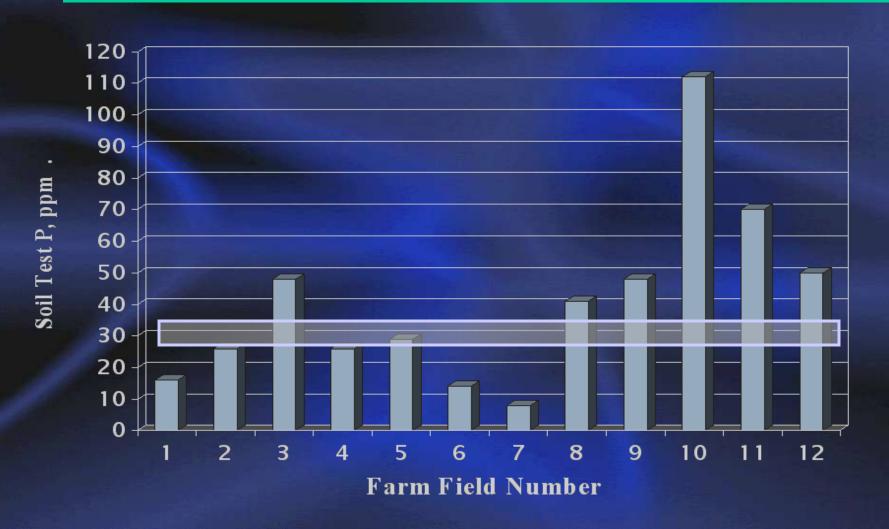
Comparing Crop Removal With Manure Nutrient Content

- Corn utilizes approximately three times more nitrogen than phosphorus.
- Manure supplies N & P₂O₅ at approximately a 1:1ratio.
- Result = Soil test phosphorus levels increase if applying manure to meet crop nitrogen needs.

Average Soil Test P in Wisconsin

P and Water Quality: Why the concern?

No plant toxicity


>Held in soil

> Accumulates slowly

Does not leach

Soil Test Phosphorus Variability from a Wisconsin Dairy Farm

Regulations increasing P emphasis:

New NRCS Nutrient Management
Standard 590 applies if accept federal cost share

- ➤ DNR Nonpoint Performance Standard
 - * Waters impaired by P (303d list)
 - * Outstanding and exceptional resource waters

Features of P-based nutrient management

Using soil test P criteria

- ►N-based management when soil test is < 50 ppm
- Soil test 50-100 ppm, P additions limited to crop removal or less over 4 year rotation
- Soil test > 100 ppm, limit P to less than crop removal

Using P Index criteria

Rates individual fields to predict risk of P loss

Considers erosion, P levels, cover, fertilizer/manure practices

Other 590 restrictions that affect needed land base:

- Cannot spread in concentrated flow channels or buffers
- No winter spreading near lake (1000 ft), stream (300 ft) or groundwater conduit (200 ft)
- ➤ No winter spreading on slopes > 9% or 12% with RRP
- Winter application limited to P for current crop, not exceeding 7000 gal/a liquid manure

Land needs per cow:

1. 1400 lb cow produces about 10,000 gal diluted manure/yr

2. Average analysis of available nutrients (10 - 8 - 21)

3. Raising corn at 160 bu/a (160 - 60 - 45)

N-based land need for 100 cowherd:

- > 100 cows x 10,000 gal/yr = 1,000,000 gal/yr
- > 1,000,000 gal x 10 lb N/1000 gal = 10,000 lb N/yr
- $> 10,000 \text{ lb N/yr} \div 160 \text{ lb N/a}$ = 62.5 a/yr

P-based land need for 100 cowherd:

 $1,000,000 \text{ gal/yr} \times 8 \text{ lb } P_2O_5/1000 \text{ gal}$ =8,000 lb P_2O_5 /yr

> 8000 lb $P_2O_5 \div 60$ lb P_2O_5 /a = 133.3 a/yr

Dairy Dietary P Management

Milk Production	Dietary P Level
(lbs/day)	(%)
55	0.32
77	0.35
99	0.36
120	0.38

Adapted from *Nutrient Requirements for Dairy Cattle*, Seventh Revised Edition,

National Academy Press Washington, D.C., January 2001

Dairy Dietary P Management - Implications of a High-P Diet

Dietary-P	Manure-P	Spreadable Acres*	Increase In
Acres			
(%)	(lbs/cow/year)	(acres/cow/year)	(%)
0.35	42	1.6	
0.38	47	1.8	13
0.48	65	2.4	57
0.55	78	2.9	87

Farmers may need to manage dietary P intake in order to reduce manure-P.

Source: Powell et al., 2001.

^{*} Acres required to meet a P-based nutrient management plan. Manure application rates restricted to crop-P removal from an alfalfa, corn, soybean cropping system.

Dairy dietary-P intake effects on soluble P losses in runoff from fields manured at 25 tons/acre.

Runoff Event	Dietary-P Intake (%)	Runoff-P Concentration (ppm)	Runoff-P Load (g/ha)
June	0.32	0.30	7
	0.48	2.84	79
October	0.32	0.21	10
	0.48	0.89	37

Source: Ebeling et al., 2002.

P Best Management Practices

- ➤ Balance P inputs and removals
- Check and limit P in animal diets
 0.40% P adequate for dairy
- Minimum P in starter $15-20 \text{ lb P}_2\text{O}_5/a$
- Incorporate manure & fertilizer?
- Time applications to minimize runoff Fall or winter apply to tilled fields

 Spring apply to NT fields

BMP's continued

- >Apply manure P on lowest fields first
- Allow soil P to build on low risk areas
- Avoid applications if soil testP > 100-150 ppm
- > Use conservation practices
- Cover/buffers

