Laboratory Sampling of Manure Materials:

John B. Peters
Soil Science Department
University of Wisconsin – Madison

Introduction

- Nutrient concentrations can be estimated using "book" values for available N, P2O5, and K2O
- Manure testing takes management practices into account and delivers more accurate values
- Sampling technique greatly influences test results
- Sample handling and testing methods also affect analytical results

Sources of Manure Nutrient Content Variability

- Animal species
- Management
 - Bedding
 - Storage Type
 - Time
- Sampling technique
- Laboratory
 - Sample Preparation
 - Method

Effect of In-Lab Variability on Total Nutrient Content of Manure

	No. of				Nutrient*	
Material	Analysi	S	DM	N	Р	K
					- %	
Liquid Dairy	4	Mean	7.13	4.25	1.04	3.63
Manure #3		SD	0.08	0.09	0.03	0.04
Liquid Dairy	4	Mean	6.05	4.65	1.28	4.07
Manure #4		SD	0.09	0.05	0.05	0.04

* Dry Weight Basis, University of Wisconsin Soil and Forage Analysis Lab - Marshfield

Effect of In-Lab Variability on Total Nutrient Content of Manure

	No. of				Nutrient*	
Material	Analysis		DM	N	Р	K
					. %	
Poultry	8	Mean	28.14	6.31	1.76	3.08
(fresh)		SD	0.15	1.12	0.04	0.05
Dairy	8	Mean	14.14	3.75	0.83	3.27
semi-						
solid (fresh)		SD	0.14	0.26	0.02	0.03

^{*} Dry Weight Basis, University of Wisconsin Soil and Forage Analysis Lab - Marshfield

Sample Identification and Delivery

- Identify container and information sheet with following information:
 - Farm name / owner's name and address
 - Animal species and storage system
 - Date
- Also include application method on information sheet
- Keep samples frozen until shipped or delivered
- Ship early in the week (Mon Wed) to avoid holidays and weekends

Table of Contents – Lab Procedures

Unit III Laboratory Procedures12
1. Sample handling12
1.1 Introduction
1.2 Recommended sample handling
protocols12
1. Biohazards and laboratory safety 12
2. Sample receiving, examination and
transfer12
3. Sample stabilization and storage12
Table 4. Maximum Holding Times for
Manure at 4° C Before Specific
Analyses
4. Sample holding times
5. Homogenizing and sub sampling 13
6. Archiving and disposal
1.3 References
2. Dry matter analysis
2.1 Laboratories use many methodologies14
2.2 Principle of the method
2.3 Apparatus
2.4 Procedure
Sub sampling and sample size
2. Times and temperatures
Table 5. Maximum fresh sample size for dry matter determination in open vessels 16
3. Weighing
2.5 Calculations
2.6 Precision and accuracy
1. Precision
2. Accuracy
2.7 References

Sample Handling

- Biohazards and laboratory safety
- Sample receiving, examination and transfer
- Sample stabilization and storage
- Sample holding times
- Homogenizing and subsampling
- Archiving and disposal

Samples come in many different types of containers

Sample Containers – Plastic recommended

Sample Storage and Handling

- Solid/Semi-solid samples
 - Thoroughly mix composite sample
 - Fill a one-gallon heavyduty ziplock bag approximately one-half full
 - Squeeze out excess air, close and seal
 - Store sample in freezer if not delivered to the lab immediately

Sample Storage and Handling

- Liquid samples
 - Thoroughly mix composite sample
 - Fill a one-quart plastic bottle not more than threequarters full
 - Store sample in freezer if not delivered to the lab immediately

Samples following overnight drying

Long bedding sample

"Salad" chopper used for long straw

Dry matter determination

High vs. Low dry matter sample

2mm Wiley grind for solid samples

Oven dry samples dried in Wiley mill

Ground sample saved in plastic bottle

Dried and ground sample archived

Liquid samples ground by hand

Subsampling liquid samples for

Approximately 10mls/10g used

Sulfuric Acid added to digestion flask

Acid used to wash down neck of flask

Manure added to flask and cylinder re-weighed to determine sample wt.

Macro Kjeldahl flasks with acid added

Samples archived in freezers

Samples Analyzed By: University of Wisconsin-Extension SOIL TEST REPORT 1900 University of Wisconsin-Madison 1900 1801 Decarment, Madison, WI SOIL & FORAGE ANALYSIS LAB Page 1 for Field 8396 YELLOWSTONE DRIVE MARSHFIELD, WI 54449 This Report is for: 1-99999 LAB NO. UN SOIL & FORAGE LAB UN SOIL & FORAGE LAB County Account No. 901 WOOD 83% YELLOWSTONE DRIVE 8396 YELLOWSTONE DRIVE MARSHFIELD WI Oate Received Date Processed 54449 MARSHFIELD WI 54449 08/14/00 14-Aug- 0 NUTRIENT RECOMMENDATIONS Fertilizer Credit Nutrients to Apply Crop Nutrient Need Yield Goal Cropping Sequence Eleko P.O. Legume N Manure N P.O. P.O. lbm/e - Ran/e De/s 5.0 - per acre -111- 130 Bu Corn, grain 120 65 20 100 Wither subsoil group) Bats 61.0-90.0 Bu Alfalfa 4.6- 5.5 T 290 The time required for this rotation to reach pH 6.8 is 8.0 T/a of 60-69 time or 6.5 T/a of 80-89 lime. ADDITIONAL INFORMATION lice norw you beautigues a notabnemmoser artif A ph is more than 0.2 units below the cotimum pH.

First year replacement credit based on 2 years of non-incorporated Dairy 5.0 tons manure/acre. If corn harvested for silage instead of grain, add extra 30 lb P205/A and 90 lb K20/A to next crop. Reduce mitrogen by 50% if barley or oats are underseeded with a legume forage.

If lime has been applied in the last 2 years, more lime may not be needed due to incomplete reaction.

Starter fertilizer (e.g. 15+26+20 bs N+P,C,+K,D/a) is: advisuple for row crops on solis slow to warm in the spring

A sest introductional many perfect assignate actual corn A needs.

If conservation stage leaves more than 50% residue cover when core follows after core, rade an additional 30 N balls.

If attalfa will be maintained for more then three years. increase, recommended KJO by 20% each year

Summary

- The value of manure testing is highly dependant on sampling technique
- Sample handling and testing methods influence analytical results

Manure analysis conversions and constants

- 1 lb P = $2.29 P_2 O_5$
- 1 lb K = 1.20 lbs K_2O
- 1 gallon liquid manure = 8.3 lbs
- If dry matter is less than 11.5% nutrient results are normally reported in lbs/1000 gal
- If dry matter greater than 11.5% nutrient results are normally reported in lbs/ton
- To convert % to lbs/ton multiply by 20
- To convert % to lbs/1000 gal multiply by 83

Conversion factors between liquid and solid values