Manure Composition and Incorporation Effects on Phosphorus in Runoff Following Corn Biomass Removal

Carrie Laboski

Extension Soil Fertility/Nutrient Management Specialist

Soil, Water, & Nutrient Management Meetings
December 1-6, 2011

Background

- Corn biomass removal (silage) has historically been a common practice in Wisconsin
- Increased interest in corn biomass for bioenery production
 - What effects could this have on surface losses of sediment and P?
 - If manure is applied in an effort to return some organic material to the soil, will it mitigate P losses?
- No information in the literature evaluating the effect of both tillage and manure on surface losses of sediment and P in a corn biomass removal system

Objective

 To determine the effect of spring surfaceapplied dairy manure with and without incorporation on simulated runoff amounts and sediment and P fraction losses in runoff in spring and fall when a corn biomass is removed

What did we do?

- Arlington Ag Research Station
 - Moderately well-drained Saybrook silt loam with 6% slope
 - 75 ppm P; 151 ppm K; 4.2% OM; 6.8 pH
- Fall 2007 corn silage harvest
- Spring 2008 manure applied and tillage (notill or chisel) established

Manure	Manure info	Manure A	en e	Rates applied lb P ₂ O ₅ /a T Solids/a		
Composted	3' in-barn pack of manure/sawdust	4.5	28	96	6.0	
Pit	Free stall, rice hull bedding, transferred daily to a pit	5.3	21	194	7.5	

We made it rain

- When
 - Spring (2-16 June)
 - Fall after silage harvest (13-16 Oct)

- Rainfall intensity of 3 inch/hr (~ 50 year event)
- Runoff collected
 - From a 8.93 ft² area in each plot
 - Total amount during 60 minutes immediately following rainfall initiation
 - Separated & filtered for various P and sediment fractions

What did we learn?

Spring tillage and manure source effects on surface residue cover, amount of simulated rainfall applied before the onset of runoff, and runoff amount following 60 min of simulated rainfall

Tillage	Manure Source	Spring Surface residue			Fall rainfall simulation Rainfall Surface before residue runoff Runoff		
		%	mm	mm	%	mm	mm
No-till	None	26 b	8	39 a	25 b	5	61 a
	Compost	67 a	27	6 c	57 a	8	17 d
	Pit	70 a	15	3 с	58 a	10	10 d
Chisel	None	13 c	7	12 b	13 c	6	52 a
	Compost	29 b	20	7 c	21 bc	6	37 b
	Pit	29 b	10	6 c	25 b	7	28 c
	Tillage	<0.01	0.27	0.04	<0.01	0.38	<0.01
	Source	<0.01	0.02	< 0.01	< 0.01	0.26	<0.01

Addition of manure reduced runoff volumes by an average of 82% in

NT and 42% in CP averaged over spring and fall

Effect of P application rate and tillage on dissolved reactive P (DRP) concentration and load from spring and fall rainfall simulations

 Sediment and particulate P concentrations in runoff were decreased as manure P rate (and manure solids) increased and were higher in CP compared with NT

Conclusions

- Surface application of dairy manure with >20% solids may reduce sediment and particulate P losses in runoff without increasing dissolved reactive P and dissolved organic P losses in the year of application where corn biomass (or silage) was harvested
- Further research on soils with different infiltration capacity and/or separated solid manure sure be conducted to verify these results

Questions?

Thanks to:

- Todd Andraski
- Rosa Yagüe
- UW-Madison Graduate
 School
- UW-Madison Non-Point Program
- Agrifood Research and Technology Centre Aragon (Zaragoza, Spain)

Contact Info:

- Carrie Laboski
- laboski@wisc.edu
- 608-263-2795
- www.soils.wisc.edu/extension/

