Monitoring Runoff and Sediment at the Platteville Pioneer Farm

Christopher A. Baxter
Assistant Professor, Soil and Crop Science
UW-Extension Nutrient Management Specialist
University of Wisconsin - Platteville

Pioneer Farm Location

5 miles south of Platteville, WI. Located in MLRA 105 – Northern Mississippi Loess Hills

Pioneer Farm Operations

- 330 acres tillable cropland
- contour strips, terraces

Beef Unit /
Bull Test
Station

Nutrient Sources

- Manure Sources
 - Swine
 - Compost
 - Beef
 - Pack manure, compost, lot runoff effluent
 - Dairy
 - Single stage lagoon, pack manure, compost
- Use only N fertilizers

Current Manure Management

- Provide full or partial N need for corn
- Estimate manure nutrients
- Sample all manure at time of application
- Follow setback guidelines
- Apply to lowest P soils when possible
- Yearly soil testing
- Composting 100% of swine manure, some dairy and beef manure

Results of whole-farm mass balance

- **2002**:
 - N: 93 lb/acre
 - P: 21 lb/acre
 - K: 43 lb/acre
- **2003**
 - N: 96 lb/acre
 - P: 8 lb/acre
 - K: 24 lb/acre

Planned expansion of swine and dairy herds will increase future mass balances under current manure management strategies.

Pioneer Farm Soil Tests 1968-2003

Pioneer Farm Research Mission

- Mission: Contribute to the vibrancy of Wisconsin's agricultural and environmental health.
 - Research addresses issues identified by stakeholders that include:
 - Producers
 - Regulatory agencies
 - University researchers and educators
 - Non-governmental organizations

Pioneer Farm Research Priorities

- 1. Baseline measurements: environmental & farm management
- 2. Water quality: soil conservation practices, erosion & sediment delivery
- 3. Nutrient management: focus on N & P
- 4. Manure Management composting, liquid/solid separation
- 5. Air quality odor monitoring
- ** Support of science-based public policies **

Typical Pioneer Farm Monitoring Station

- Raingage
- Solar Panel
- Gaging station
- Shaft-encoder stage sensor
- Plywood wingwall

Baseline Runoff Data

- Evaluate factors affecting runoff quality (sediment and P)
 - Relationships among runoff volume, sediment and P concentration
 - Effects of cropping systems
 - Snowmelt vs rainfall runoff

Runoff Volume vs. Suspended Sediment Loads – Site 3

Runoff volume vs Total P Load – Site 3

Sediment Load vs. Total P Load – Single Use Watersheds

Effect of Cropping System on Annual Suspended Sediment Load

Effect of Cropping System on Total P Load

Snowmelt Total and Dissolved P

Impact of Winter Manure Applications 2004 Winter Runoff –3 events

Calibrating the P Index: Why use Pioneer Farm?

- PI has been determined for all fields
- Single-crop
 subwatersheds provide
 ideal conditions for
 measuring edge-of-field
 losses
- Have flexibility in management to test assumptions of the PI

Results of PI and Annual Loads

**** Provisional Data ****

channelized flow & gully erosion

Site 2 – June 2004

Is the PI a better predictor of runoff losses than Soil Test P?

*** Provisional data and Site 2 – 2004 removed

Phosphorus Index - Related Research

- Testing the relationship between soil test P and runoff concentrations at plot and subwatershed scales
- Evaluating the assumption that runoff P is consistent throughout the year
- Determining if a sediment P enrichment factor would better predict sediment P concentrations
- Determining the impact of acute P losses

Ongoing Research: Testing the relationship between STP and runoff P losses

Small Plot Scale

Watershed Scale

Alfalfa watershed

Winter runoff – Sites 2 and 8 (not manured)

Season (2004 crop year)	Site 2 (1st year corn)	Site 8 (1st year hay)
	Average dissolved P concentration (mg/L)	
Fall (harvest- Nov. 15)	0.50 (n=4)	N/A
Winter (snowmelt and winter precipitation)	0.43 (n=20)	2.35 (n=23)
Spring (April 1 – June 1)	0.46 (n=13)	0.57 (n=6)
Summer (June 1 - harvest)	0.42 (n=8)	1.57 (n=2)

Evaluating Acute Losses

Fall / Winter 2004-2005: Planned applications of solid and liquid dairy manure

Summary

- Large amounts of data have been collected
- Baseline data is beginning to answer questions about runoff sediment and P dynamics
- Data quality control and dissemination is a priority
- Goal is to provide sound basis for nutrient management – related public policy, leading to more widespread adoption of BMPs

Questions?

