Nutrient Management Considerations in a High Cost Environment

Fertilizer Prices

Average Midwest Fertilizer Price 1988 to 2008

Factors contributing to current fertilizer prices

- □ Global demand for N, P, and K is rising quickly
 - Need to feed more people
 - Better diets in developing world
 - Ethanol production
- □ Transportation costs increased
- □ Weak U.S. dollar
- □ High natural gas price

Source: The Fertilizer Institute, Spring 2008

Wisconsin N Fertilizer Prices Oct. 24 – 31, 2008

Product	Fall Price		Spring Price		Average nutrient price		
			(VOL	ATILE)	N	P_2O_5	K ₂ O
	\$/ton	# sites	\$/ton	# sites	\$/lb of nutrie		ent
Anhydrous	1125	2	1199	1	0.69		
Amm.sulf	483	7	514	3			
Urea	784	8	749	4	0.85		
UAN 28%	521	4	549	5	0.93		
	\$/gal						
Agrotain	63	2					
NServe	43	2					
NSN	124	3					

Wisconsin P and K Fertilizer Prices Oct. 24 – 31, 2008

Product	Fall Price		Spring Price		Average nutrient price		
			(VOL	(VOLATILE)		P_2O_5	K ₂ O
	\$/ton	# sites	\$/ton	# sites	\$/Ib of nutrient		
MAP	1138	2	1125	2	0.69	0.95	
DAP	1124	7	993	4	0.69	0.95	
10-34-0	1478	1	1150	1	0.69	1.97	
Potash	881	10	884	4			0.73
	\$/gal						
Avail	225	3	215	1			
(½ gal/ton)							

Spring Price Forecast?

- □ Items from recent news articles
 - Less fertilizer being applied this fall
 - Inventories are high at some locations
 - Manufacturers may cut supply
 - Retailers may reduce price to stay competitive for spring sales
 - Could be very risky for retailers who paid top dollar
- Producers stay in contact with your retailers regarding price & availability
- Set up a google alert for fertilizer prices to stay on top of news stories

Soil Tests

Getting the most BANG!!! fertilizer buck

- Start with a recent soil test
 - No more than 4 years old
- □ Cost of a soil test
 - \square \$10/sample x 1 sample/5 acres = \$2/acre
- □ Price of fertilizer
 - \$0.95/ lb P₂O₅
 - \$0.73 / Ib K₂O
- Soil testing is an inexpensive, but beneficial tool
 - Soil testing reduces risk

What do soil test interpretation categories really mean?

Soil Test Interpretation Categories

Fertilizers used at high soil test levels are for starter or maintenance purposes

General relationships between soil test P and K levels and percent yield

Critical soil test level is the soil test level where ~95% of total yield can be obtained without additional fertilizer

From Tisdale et al., 2005

Wisconsin's P and K recommendation system

Wisconsin soil test interpretation categories – Generalized

	Medium & fi	ne-textured soils	Course-textured soils			
Crop	Optimum	No response	Optimum	No response		
		Soil Test	P (ppm)			
Alfalfa	16 – 23	> 30	26 – 37	> 55		
Corn	14 – 18	> 28	23 – 32	> 42		
Soybean	6 – 10	> 20	10 – 15	> 25		
	Soil Test K (ppm)					
Alfalfa	91 – 120	> 170	81 - 120	> 180		
Corn	81 – 100	> 140	66 – 90	> 130		
Soybean	81 – 100	> 140	60 – 80	> 120		

Nutrient use efficiency - Rule # 1

☐ The first increment of nutrients applied has the greatest efficiency and potential for economic return

Phosphorus & Potassium

Phosphorus – general guidelines

- □ Take nutrient credits from manure, biosolids, and other waste applications
 - Be sure these applications are in compliance with the nutrient management plan

Soil Test P Category	Options at current P prices (~\$0.95/ lb P ₂ O ₅)
High or Excessively High	Eliminate P applications; maybe $\sim \! 10 \text{ lb P}_2\text{O}_5/\text{a}$ as starter
Optimum	Apply near recommended rates (crop removal)
Low or Very Low	Reduce recommended rate by 10%; apply no less than crop removal rate Can't afford to build soil test levels in current econ. climate

Potassium – general guidelines

 Take nutrient credits from manure, biosolids, and other waste applications

■ Be sure these applications are in compliance with the nutrient management plan

Soil Test K Category	Options at current K prices (~\$0.73/ lb K ₂ O)
Excessively High	No K recommended
High or Very High	Defer or reduce K applications; maybe benefits to K in starter
Optimum	Apply near recommended rates (crop removal)
Low or Very Low	Perhaps reduce recommended rate by 10%; do not apply less than crop removal Can't afford to build soil test levels in current econ. climate

Crop nutrient removal

Crop	Moisture (%)	lb P ₂ O ₅ / unit yield	lb K ₂ O / unit yield
Alfalfa (T/a)	DM	13	60
Clover (T/a)	DM	13	60
Corn, grain (bu/a)	15.5	0.38	0.29
Corn, silage (T/a)	65	3.6	8.3
Corn, stover (T/a)	DM	4.6	32
Soybean (bu/a)	13	0.80	1.4
Wheat (bu/a)	13.5	0.50	0.35
Wheat straw (T/a)	DM	6.0	28

Additional crop nutrient removals can be found in UWEX Publication A2809 *Nutrient application guidelines for field, vegetable, and fruit crops in Wisconsin*

- K leaches out of hay/stover/straw as it lies on the ground
- If selling stover/straw for value of nutrients, then it would be useful to sample for more accurate estimates

Lime

Target pH levels

 Maintaining soil pH at target pH for the most sensitive crop in the rotation will insure good yields

	OW	рΗ	can	kill	crops
--	----	----	-----	------	-------

Crop	Target pH
Alfalfa	6.8
Clover	6.6
Soybean	6.3
Corn	6.0
Wheat	6.0

Effect of soil pH on crop yield response

Variable rate application of nutrients

- This could be a year where it pays to variably apply nutrients
- Best chance of economic return are in fields with a lot of variability
 - Soil test levels ranging from low to high
 - Have areas requiring nutrients and other areas no need
- □ No right answer for everyone
 - Must look at soil test reports to get an handle on variability
 - Cost of application
- Remember variable rate can be crude
 - Off or On
 - Apply over some areas 2x, others 1x or 0x

Starter Fertilizer for Corn

Re-evaluating 2x2 starter fertilizer

□ Assumptions:

- 9-23-30 costs \$1000/T, 100 lb/a of 9-23-30 applied 2x2
 - Starter fertilizer is \$50/a
- Corn is \$4.15/bu
- Need 12 bu/a increase to pay for cost of starter
- □ 100 Wisconsin sites 1995-1997
 - Average starter rate of 15-26-32
 - Range of soil test P and K levels, most had EH P & K
- Probably does not pay to use starter fertilizer on soils with VH and EH soil test levels in 2009
 - Caveat no-till

Yield increase of at least	Probability of yield increase
bu/a	%
4	49
6	34
8	18
10	10
12	6
16	5
20	3

Re-evaluating 2x2 starter fertilizer cont.

- K in starter can be important on soils with high soil test P levels (WI and PA research)
- □ S in starter may be important on soils with high soil test P levels (PA research)
- □ Remember on high P testing soils response to starter:
 - Is more likely to occur with later planting, greater RM hybrids
 - If soil test K is high or less (<140 ppm)</p>

Re-evaluating 2x2 starter fertilizer cont.

- On optimum or lower testing soils, starter is a good way to apply some or all of the P and K
- \square Rates of 10-20-20 or 10-20-30 (N-P₂O₅-K₂O) have shown good results on optimum testing soils

Effect of starter placement and rate on corn yield in CL and SiCL soils in MN, 2004-2006

- □ 3 grades of starter
 - 10-34-0 5 and 10 gal/a
 - 4-10-10 5 and 10 gal/a
 - □ 3-18-18 3.4 and 6.8 gal/a
- □ Applied
 - With seed in 2004, 2005, and 2006
 - □ Single band above the seed in 2004, 2005, 2006
 - Dual band above the seed in 2004
 - Below seed in 2005 and 2006
- No yield difference between fertilizer rates (low or high), grade, or placement
 - Note no comparison to 2x2 placement

Lamb, 2008; see Proc. of 2008 Wis. Fertilizer, Aglime, and Pest Management Conf. http://www.soils.wisc.edu/extension/wfapmc/

Tips for safely using liquid fertilizers with/near the seed

- Do not use fertilizer with a salt index greater than 20.0
- Avoid using fertilizers containing ammonium thiosulfate as the salt index may be high
- \square Apply no more than 10 lb/a of N + K₂O in-furrow
- If the soil is dry at planting
 - Consider placing the fertilizer away from the seed
 - Sandy soils can be more problematic
- If dribbling the fertilizer on the soil surface, be sure
 - Seed is planted deep enough
 - There is adequate soil moisture for the fertilizer to diffuse

See Laboski, 2008 Proc. of 2008 Wis. Fertilizer, Aglime, and Pest Management Conf. http://www.soils.wisc.edu/extension/wfapmc/

Salt index of common liquid fertilizer formulations

Formulation	Salt index	Salt index per unit of plant nutrient (20 lb)	
2-20-20*	7.2	0.17	
3-18-18*	8.5	0.22	Formulated with
6-24-6*	11.5	0.32	potassium phosphate as K
6-30-10*	13.8	0.30	source
9-18-9*	16.7	0.48	
10-34-0**	20.0	0.45	Use caution in-furrow
7-21-7***	27.8	0.79	
4-10-10***	27.5	1.18	Not suggested for use in-furrow
28% UAN***	63.0	2.25	

Fertilizer form

- No appreciable difference between liquid and dry fertilizers with regard to nutrient availability
- □ Ortho vs. Poly phosphates
 - No difference

Nitrogen

N:Corn Price Ratio

Price of N (\$/lb N)		Price of corn (\$/bu)							
	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00
0.50	0.17	0.14	0.13	0.11	0.10	0.09	0.08	80.0	0.07
0.55	0.18	0.16	0.14	0.12	0.11	0.10	0.09	80.0	0.08
0.60	0.20	0.17	0.15	0.13	0.12	0.11	0.10	0.09	0.09
0.65	0.22	0.19	0.16	0.14	0.13	0.12	0.11	0.10	0.09
0.70	0.23	0.20	0.18	0.16	0.14	0.13	0.12	0.11	0.10
0.75	0.25	0.21	0.19	0.17	0.15	0.14	0.13	0.12	0.11
0.80	0.27	0.23	0.20	0.18	0.16	0.15	0.13	0.12	0.11
0.85	0.28	0.24	0.21	0.19	0.17	0.15	0.14	0.13	0.12
0.90	0.30	0.26	0.23	0.20	0.18	0.16	0.15	0.14	0.13
0.95	0.32	0.27	0.24	0.21	0.19	0.17	0.16	0.15	0.14
1.00	0.33	0.29	0.25	0.22	0.20	0.18	0.17	0.15	0.14

Nitrogen Guidelines			N:Corn Price Ratio (see other side)				
	for Corn in Wisconsin		0.10	0.15	0.20		
SOIL	PREVIOUS CROP		LBS N/ACRE (total to apply) ³			
high/very high yield potential soils	Corn, Forage legumes, Legume vegetables, Green manures ⁴ Soybean, Small grains ⁵	165	I35 20■ 55 II5 00■ 30	120 00■ 35 100 85■ 5	105 90120 90 70100		
medium/low yield potential soils	Corn, Forage legumes, Legume vegetables, Green manures ⁴ Soybean, Small grains ⁵	120 00 = 40 90 75 = 10	105 90 - -120 60 45 - -70	95 85- - 110 50 40- - -60	90 80-=-100 45 35-=-55		
sands/ loamy sands	Irrigated—All crops ⁴ Non-irrigated—All crops ⁴	215 200=230 120 100=140	205 90 - -220 105 90 - -120	195 80 - 2 0 95 85- - 0	190 175 - -200 90 80- - -100		

I-3-2006-10M

¹ Maximum return to N (MRTN) rate. ² Range within \$1/acre of MRTN rate. ³ Includes N in starter. ⁴ Subtract N credits for forage legumes, legume vegetables, animal manures, green manures. ⁵ Subtract N credits for animal manures and second year forage legumes.

Some guidelines for using ranges

Situation	Portion of Range to Use			
	low	mid	high	
> 50 % residue cover at planting			✓	
Previous crop is small grain on medium/fine textured soils	√	√		
100 % of N is from organic sources			√	
	Plus up to 20 lb N/a in starter fertilizer may be applied			
If there is a likelihood of	√			
residual N (carryover N)	Or use PPNT			

Some guidelines for using ranges

Situation	Portion of Range to Use		
	low	mid	high
Medium & fine-textured soils with < 2.0 % OM			✓
Medium & fine-textured soils with > 10.0 % OM	√		
Course-textured soils with < 2.0 % OM			✓
Course-textured soils with > 2.0 % OM	√	√	

Profitable N Rates

- A range of N rates can produce profitable yields
- Economicsclearly drivesthe profitableN rate

Effect of price level on profitable range

2006 & 2007 Yield loss with MRTN Not considering economics

Calculated potential yield loss

<u>Maximum Yield – Yield at MRTN rate</u> x 100 Maximum Yield

2006 & 2007 Yield loss with MRTN Not considering economics

Control weeds for max. NUE

June 13, 2007 – 30 cm spray date

Mid July 2007

Effect of N rate & timing of weed control on corn grain yield, 2006

Effect of N rate & timing of weed control on corn grain yield, 2007

Should you protect your N?

Types of "stabilitzer/protectants"

- □ Urease inhibitors
 - Temporarily prevents N volatilization from surface applied urea (eg. Agrotain (NBPT))
- □ Nitrification inhibitors
 - Temporarily prevents NH_4^+ conversion to NO_3^- (eg. NServe (nitrapyrin), Instinct, DCD)
- □ Polycoated urea
 - Delayed release (eg. ESN)
- □ Sulfur coated urea

Do protectants pay?

- □ Yes, if you have situations for N loss
 - Surface applied urea, no incorporation within 3 days
 - Wet soils sometimes, denitrification
 - Sandy soils sometimes, leaching
 - Fall applied N may still have losses leach/denitrification

Silver bullet or Snake oil?

New products, non-traditional soil additives, growth stimulants, ect.

- □ If it sounds too good to be true, then it probably is
- □ Is it registered with DATCP?
- Can the company provide you with independent research data that has been collected within the region?
- http://www.agronext.iastate.edu/soilfertility/nutrie nttopics/addbyproducts.html

Value of manure

1st year nutrient value of 4,000 gal of dairy manure

Average value of 1st year available nutrients in a 4,000 gallon tank of liquid dairy manure. Plus value of 1st year alfalfa N credit (good stand, limited regrowth; OR fair stand with >6" regowth)

Manure nutrient credits

- □ All manure nutrients are not available
- □ Total nutrient content = inorganic + organic
- Nutrient credit is dependent upon
 - 1st year nutrient availability coefficient
 - 30% of total N if no incorporation
 - 40% of total N if incorporated within 3 days
 - \blacksquare 60% of total P_2O_5
 - 80% of total K₂O
 - Rate of manure applied

First year available manure nutrients

	N					
Species	Surface	incorporated	P_2O_5	K ₂ O		
Solid manure		lb/	ton			
Dairy	3	4	3	7		
Beef	4	5	5	9		
Turkey	20	24	24	24		
Liquid manure	lb/1000 gal					
Dairy	7	10	5	16		
Beef	5	7	5	16		
Swine in pit	25	33	25	24		
Swine out pit	1 <i>7</i>	22	10	16		
Poultry	8	10	6	10		

Additional animal species can be found in UWEX Publication A2809 *Nutrient application guidelines* for field, vegetable, and fruit crops in Wisconsin

Consider using other waste products

Use legume N credits

Forage legume N credits

	Med/fine textured soils		Sands/loamy sands	
	Regrowth (inches)			
	> 8	< 8	> 8	< 8
Crop/stand density	lb N/a to credit			
1 st year credit				
Alfalfa				
Good (70-100% alfalfa, >4 plant/ft²)	190	150	140	100
Fair (30-70% alfalfa, 1.5-4 plant/ft 2)	160	120	110	70
Poor (0-30% alfalfa, <1.5 plant/ft²)	130	90	80	40
Red clover, birdsfoot trefoil 80% of alfalfa for similar stand				stands
Vetch	160	90	110	40
2 nd year credit				
All crops, good or fair stand	50	50	0	0

Green manure N credits

Crop	< 6" growth	> 6" growth	
	lb N/a to credit		
Alfalfa	40	60 – 100 °	
Clover, red	40	50 – 80 °	
Clover, sweet	40	80 – 120 °	
Vetch	40	40 – 90 ^{a,b}	

^a Use the upper end of the range for spring seeded green manures that are plowed under the following spring. Use the lower end of the range for fall seedings.

^b If top growh is more than 12" before tillage credit 110 – 160 lb N/a

Pre-sidedress nitrate test (PSNT)

- □ Use PSNT to confirm manure credits
- PSNT can also be used to confirm alfalfa credits

- □ When/how to sample:
 - When corn is 6-12" tall
 - □ Composite 15 1 foot soil cores (representing ~20 acres)

Questions?