NITROGEN TIMING AND SOURCES

Larry G. Bundy

Dept. of Soil Science

Univ. of Wisconsin

Timing of Nitrogen Uptake by Corn

Recommended Timing of Nitrogen Applications for Corn

Soil	Fall	Preplant	Sidedress
Medium/Fine Texture Well-Drained	OK*	Optimum	OK
Medium/Fine Texture Poorly Drained	No	OK	Optimum
Coarse texture	No	No	Optimum

^{*}Includes use of BMPs for fall-applied N.

Nitrogen timing and inhibitor effects on corn yield, Fond du Lac Co, WI

N timing	N-Serve	Yield (bu/a)
None		70
Fall	no	132
Fall	yes	143
Sidedress	no	169
Sidedress	yes	166

M. Rankin, UW-Extension

140 lb N/acre as anhydrous ammonia

Corn yield response to preplant and sidedress N on silt loam soils in Wisconsin, 1990-1992

Corn yield response to preplant and split N timing on silt loam soils in Wisconsin, 1991-1992

Corn yield response to preplant, sidedress, or split N timing in Iowa and Minnesota

	Location (years)		
	Iowa	Minnesota	
Sites	(1987-1991)	(1989-1992)	
Total	65	32	
N responsive	25	28	
Preplant = SD/Split	15	16	
Preplant > SD/Split	8	4	
Preplant < SD/Split	2	8	

Killorn, et al., ISU; Randall, MN

Effect of N timing on the relationship between N rate and corn grain yield, Hancock 2002.

Performance of polymercoated urea (ESN) as a nitrogen source for corn

ESN Release Mechanism

TREATMENTS - 2003 & 2004

- N Sources: PCU(ESN),
 Ammonium Sulfate, Urea
- N Timing: Preplant, Sidedress, Split(s)
- Rates: 0-250 lb N/acre,+/- Sulfur*

N Source & timing effects on corn grain yield at Hancock, WI, 2003

		N	N rate, lb/acre		
N source	N timing	150	200	Mean	
		graii	grain yield, bu/acre		
PCU (ESN)	PP	199	208	204a	
	PP+4 wk	203	206	205a	
Am. Sulf.	PP	204	190	196ab	
	PP+DCD	203	200	202ab	
	4wk & 8 wk	184	204	194abc	
	4wk w/NI & 8wk	201	216	208a	
	8 wk	190	190	190bcd	

Time of N application relative to precipitation from May to September at Hancock, 2004.

N Source & timing effects on corn grain yield at Hancock, WI, 2004

		N	N rate, lb/acre		
N source	N timing	150	200	Mean	
		grair	grain yield, bu/acre		
PCU (ESN)	PP	170	163	167c	
	PP+4 wk	177	185	180b	
Am. Sulf.	PP	126	137	132e	
	PP+DCD	128	143	136e	
	4 wk	179	183	181b	
	4 wk & 6 wk	189	202	196a	

No N control = 115 bu/acre

Optimum N rates and yield with several N source/timing options, Hancock, WI, 2004

N Source			Yield @
& timing	R^2	EONR	EONR
		lb/acre	bu/acre
ESN:PP	0.79	227	173
ESN:PP&4wk	0.88	215	190
Am. Sulf. 4&6 wk	0.95	193	202
Overall	0.99	207	187

Nitrogen timing, placement and source effects on corn yield, Waseca, MN, 2004*

Timing	Placement	Source	Yield bu/a
Fall	band (4 in)	Urea	164
Fall	band (4 in)	ESN	168
Fall	bcast	ESN	149
PP	bcast incorp	Urea	179
PP	bcast incorp	ESN	176
Post plt	surf bcast	ESN	185
PP	inject	AA (120)	185
None			97

^{*}corn after soybean, 100 lb N/acre rate for all treatments. G. Randall, Univ. Minn. LSD (0.10) = 6.2 bu/acre

SUMMARY - 2004

- Rainfall patterns favored leaching
- Preplant N treatments showed N deficiency (except PCU/ESN)
- Sidedress or split N applications were superior to preplant
- PCU/ESN shows potential for lowering N losses where all or part of the N is applied preplant

Corn yield response to preplant or sidedress N at 65 sites in Iowa, 1987-1991

Sites	Number
Total	65
N responsive	25
Preplant = SD	15
Preplant > SD	8
Preplant < SD	2

Killorn, et al., ISU

Corn yield response to preplant or split N at 32 sites in Minnesota, 1989-1992

		Soil parent material		
Sites	No.	Glacial till	Loess	Outwash
Total	32	14	11	7
N responsive	28	14	9	5
Preplt. = Split	16	7	7	2
Preplt. > Split	4	3	1	O
Preplt. < Split	8	4	1	3

Randall, MN

Prioritizing N Applications

- Apply some N to all potentially responsive acreage.
- Credit N from non-fertilizer sources
- Use diagnostic tests to identify N needs
- Manage N to avoid losses