BALANCING FERTILIZER AND ORGANIC N SOURCES FOR AGRONOMIC AND ENVIRONMENTAL BENEFITS

Larry Bundy
Dept. of Soil Science
University of Wisconsin

CURRENT RECOMMENDATIONS

- Rates
- Timing
- Nitrogen Credits
- Nitrate Testing

NRATE

- The most important factor for:
 - Agronomic N Efficiency
 - Potential for N Loss to Environment

Optimum N Rate for Corn

- Soil-specific characteristic
- Not affected by annual variations in yield
- Year-specific adjustments for soil nitrate and organic N inputs needed

Relationship between economic optimum N rate (EONR) and corn yield at EONR For 77 HYPS, 1992-2003.

Nitrogen Recommendations for Corn

	Sands & loamy sand		Other soils	
			Yield Potential	
Organic		Non-		Very high/
matter	Irrigated	irrigated	Med/low	high
%	lb N/acre			
<2	200	120	150	180
2-9.9	160	110	120	160
10-20	120	100	90	120
>20	80	80	80	80

Relationship between Excess N applied and soil water nitrate N.

Excess N Fertilizer Applied, kg ha ⁻¹

Recommended Timing of Nitrogen Applications for Corn

Soil	Fall	Preplant	Sidedress
Medium/Fine Texture Well-Drained	OK*	Optimum	OK
Medium/Fine Texture Poorly Drained	No	OK	Optimum
Coarse texture	No	No	Optimum

^{*}Includes use of BMPs for fall-applied N.

Nitrogen Credits for Alfalfa

	Sandy soils		Other soils	
Stand	Regrowth			
density	≤8"	>8"	≤8"	>8"
	lb N/a			
Good	100	140	150	190
(70-100%, >4 plants/sq ft)				
Fair	70	110	120	160
(30-69%, 1.5-4 plants/sq ft)				
Poor	40	80	90	130
(0-29%, <1.5 p	plants/sq ft)			

Nitrogen Credits for Manure

Solid Manure

	Surface Applied	Incorporated
		(lb N / ton)
Dairy	3	4
Beef	4	4
Swine	4	5

ATTAINABLE EFFICIENCIES

- Corn nitrogen requirements
- Soil nitrogen contribution
- Nitrate leaching losses
- Crop nitrogen recovery

N required per bushel in WI with and without 40 lb N credit added to EONR

Soil N and fertilizer N contributions to corn yield following corn and soybean for high and medium yield potential soils, 1991-2003.

Annual nitrate-N leached from corn fertilized with 160 lb N/a, 1996-2002

Annual nitrate-N leaching in three studies using different methods of measurement

Source 1/	Method	Nitrate-N leached, lb/a
Norman et al. (2003)	Lysimeters (ETL)	5-91
Randall & Iragavarapu (1995)	Tile drains	23-123
Andraski et al. (2000) ^{2/}	Porous cups & water balance	19-79

¹/ N rates ranged from 160-180 lb N/a.

²/ 18-mo measurement period (June-Sept.).

Nitrogen uptake and fertilizer N recovery by corn. Arlington, WI.

N rate	N uptake	% recovery			
lb/a					
0	91				
150	247	100			
0	70				
150	198	85			
U	98				
150	129	21			
	lk 0 150 0 150 0	lb/a 0 91 150 247 0 70 150 198			

ACTUAL PREVALENT PRACTICES

- Largely unknown, undocumented
- Budgets, surveys, perception indicate excess application
- Progress of nutrient management planning indicates 15-20% of cropland with plans

IMPROVING N USE EFFICIENCY

- Implement recommended practices
 - Rates
 - Credits for legumes, manure
- Develop methods to better assess soil nitrogen contribution

Gross economic return from various nitrogen management practices at 31 Wisconsin locations, 1989 to 1999.

Effect of corn to N price ratio on economic gain from various nitrogen management practices in 50 Wisconsin trials where manure and/or legume additions were made in the study year, 1989-1999.

Mean annual flow weighted nitrate-N concentrations in leachate from corn fertilized with 160 lb N/a, 1996-2002

CHALLENGES TO IMPLEMENTING IMPROVED PRACTICES

- Overcoming persistent, erroneous connection between yield and optimum N rate
- Overcoming perceived financial risk of following recommended practices, particularly N crediting