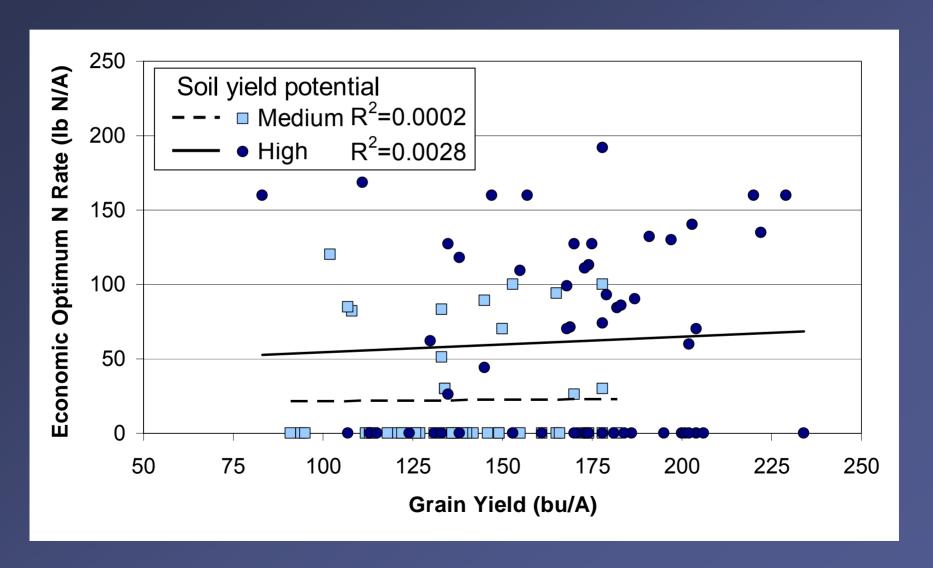
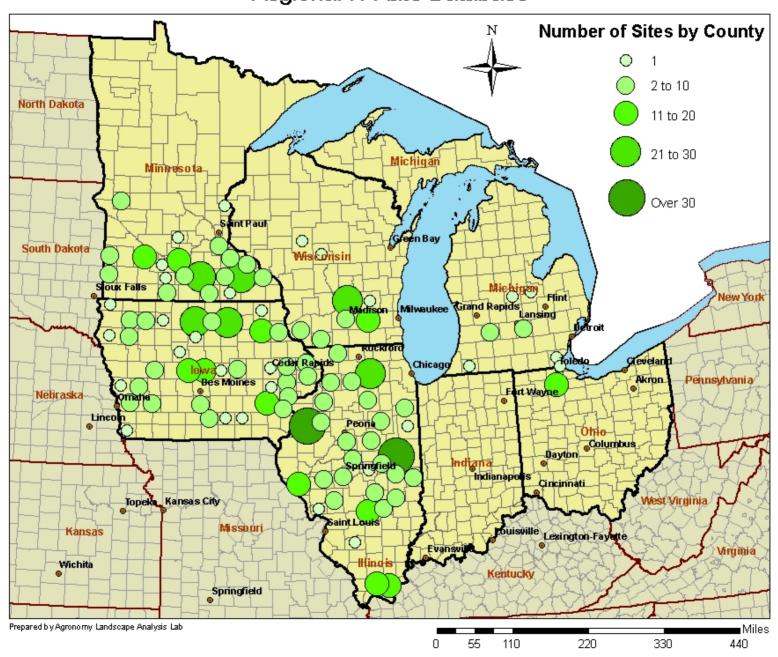
New Nitrogen Rate Guidelines for Corn Using a Regional Approach

Carrie Laboski, Larry Bundy, Todd Andraski
UW-Madison, Soil Science

Why a regional approach?


- Nutrient management may be based on a watershed approach (CSPs)
 - Watersheds may cross state boundaries
 - N recommendations for different states don't always match up
- Different states have different approaches to N recommendations
 - Can cause farmer confusion as to what is the right rate to apply
- Questions surrounding the adequacy of N rates at higher yield

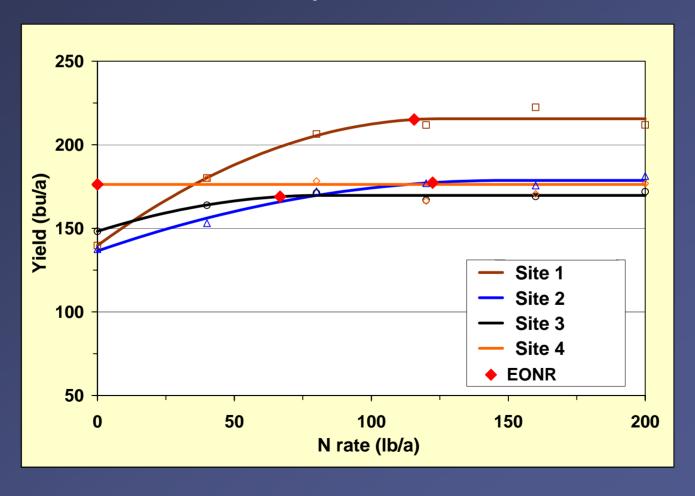
N Recommendation Comparison Prior to Fall 2005


Previous Crop:	C	orn	Soybean		
Yield Goal (bu/A):	150	200	150	200	
	——————————————————————————————————————				
IL.	180	240	140	200	
MI/IN/OH	177	245	147	215	
MN	160	200	120	160	
IA	150-200		100-	-150	
WI	160		120		

Soil with 3.1% OM, considered high yield potential

Relationship between optimum N rate and corn yield (101 WI sites; 1989-1999)

Regional N Rate Database



Foundation to the new approach

- Data analyzed the same way in each state
 - Still uses data from each state individually
 - Data from recent N response trials
 - ■1983 to present
- Based on economics of N fertilization for profitable corn production
 - Maximum return to N (MRTN)

- 1st Compile data sets for corn yield response to N for various crop rotations and soil yield potentials
 - C-C, S-C
 - high/very high, medium/low yield potential soils; irrigated sands

2nd Calculate the response model for each site

- 3rd Calculate return to N for each site in data set
 - For every 1 lb N/a applied, calculate the yield increase over the yield obtained when
 0 lb N/a is applied
 - Multiply yield increase by price of corn and subtract the cost of N
 - Do this for N rates of 0 through 240 lb N/a

4th Calculate the average return to N at each N rate, using all of the data for a given crop rotation

Site	Return to N at various N rates (lb/a)									
	100	110	120	130	140	150	160			
				– \$/acre -						
1	113.96	115.43	115.10	113.16	110.96	108.76	106.56			
2	63.80	70.18	76.56	82.94	89.32	87.98	85.78			
3	79.20	81.31	82.37	82.37	81.31	79.29	77.09			
•	•	•	•	•	•	•	•			
39	94.60	98.98	102.43	104.96	106.57	107.25	107.01			
Average	66.57	68.68	70.08	70.74	70.73	69.89	69.00			

■ 5th Find the N rate with the greatest average return to N, this is the MRTN

Site	————Return to N at various N rates (lb/a) ————							
	100	110	120	130	140	150	160	
				— \$/acrе –				
1	113.96	115.43	115.10	113.16	110.96	108.76	106.56	
2	63.80	70.18	76.56	82.9 ⁴ M	RTN	87.98	85.78	
3	79.20	81.31	82.37	82.37	81.31	79.29	77.09	
:	•	•	•	•	•	•	:	
•	•	•	•	•	•	•	•	
39	94.60	98.98	102.43	104.96	106.57	107.25	107.01	
Average	66.57	68.68	70.08	70.74	70.73	69.89	69.00	

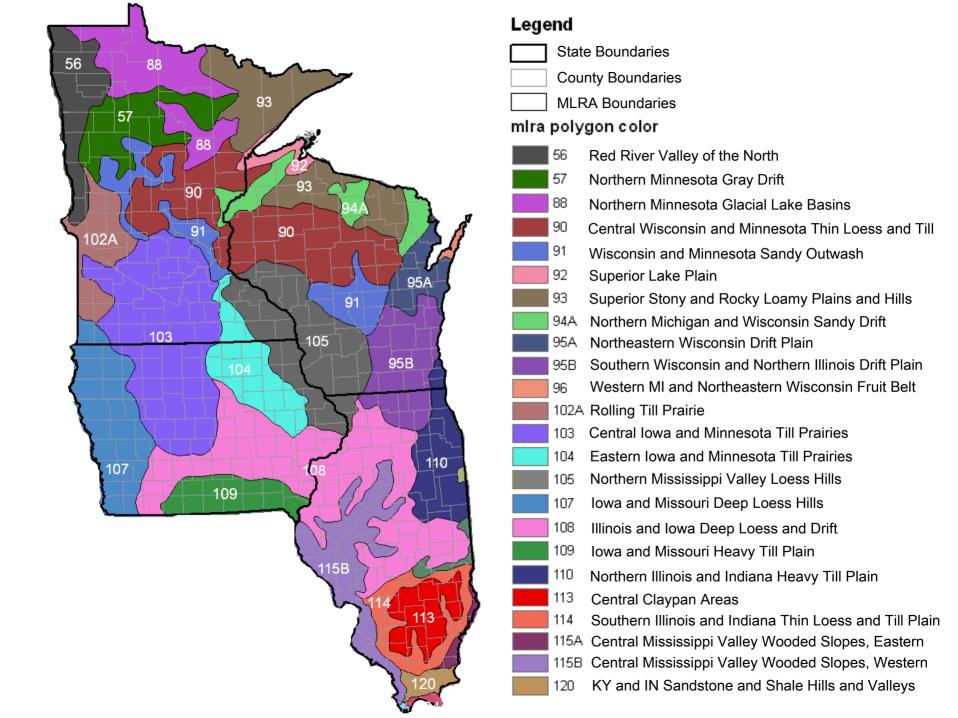
- 6th Find the N rates with returns to N within \$1/a of MRTN
 - This provides a range in N profitable N rates

Site	———— Return to N at various N rates (lb/a) ————								
	100	110	120	130	140	150	160		
				— \$/acrе –					
1	113.96	115.43	15.10	113.16	110.96	108.7	106.56		
2	63.80	70.18	76.56	82.9 ⁴ M	RTN	87.98	85.78		
3	79.20	81.3/	82.37	82.37	81.31	79.29	77.09		
•	•	Low	•	•	•	•	High		
39	94.60	98.98	102.43	104.96	106.57	107.25	107.01		
Average	66.57	68.68	70.08	70.74	70.73	69.89	69.00		

Comparison Across States Previous Crop = Corn

State	Profitable N rates						
	Low	High					
	(-\$1/a) (-\$1/a)						
		– lb N/a –					
IA	155	175	195				
IL	156	178	201				
MN	124	139	154				
WI	120	135	155				

N to Corn price ratio of 0.10


Comparison Across States Previous Crop = Soybean

State	Profitable N rates					
	Low	High				
	(-\$1/a) (-\$1/a)					
		– lb N/a –				
IA	109	126	144			
IL	144	165	186			
MN	89	104	120			
WI	100	115	130			

N to Corn price ratio of 0.10

Why do we see some difference in MRTN between states?

- Soil
- Climate

Use of MRTN in Wisconsin

N Rate Guidelines High/Very High Yield Potential Soils

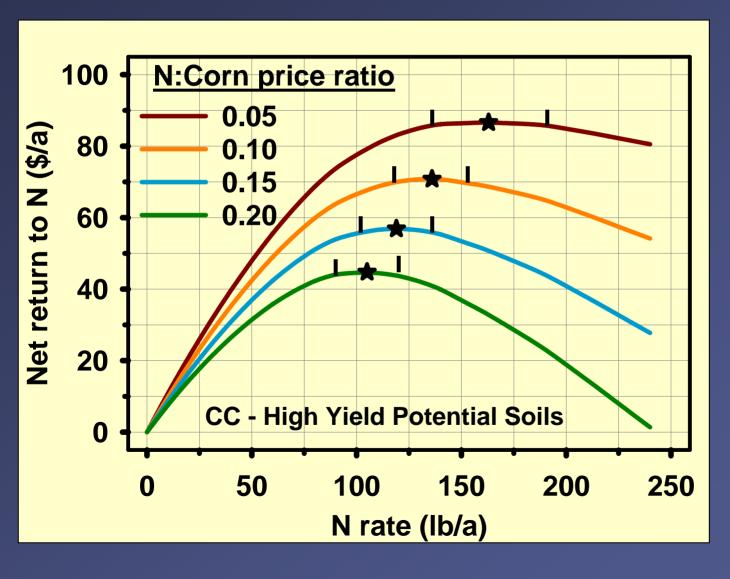
N:Corn	Previous Crop = Corn			Prev. Crop = Soybean		
Price Ratio	low	MRTN	high	low	MRTN	high
\$/lb:\$/bu	—— Ib N/a ——			—— Ib N/a ——		
0.05	135	165	190	110	140	160
0.10	120	135	155	100	115	130
0.15	100	120	135	85	100	115
0.20	90	105	120	70	90	100

Current Rec. = 160 lb/a @ 0.06

N Rate Guidelines Medium/Low Yield Potential Soils

N:Corn	Previous Crop = Corn			Prev. 0	Prev. Crop = Soybean	
Price Ratio	low	MRTN	high	low	MRTN	high
\$/lb:\$/bu	—— Ib N/a ——			—— Ib N/a ——		
0.05	90	110	135	75	90	110
0.10	80	100	110	45	60	70
0.15	70	85	100	40	50	60
0.20	60	75	90	35	45	55

Current Rec. = 120 lb/a @ 0.06


N Rate Guidelines Irrigated Sands

N:Corn		II crops excep	
Price Ratio	low	MRTN	high
\$/lb:\$/bu		—— Ib N/a —	
0.05	200	215	230
0.10	190	205	220
0.15	180	195	210
0.20	175	190	200

Current Rec. = 200 lb/a @ 0.06

Price of N	Price of Corn (\$/bu corn)							
\$/lb N	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20
0.20	0.11	0.10	0.09	80.0	0.08	0.07	0.07	0.06
0.22	0.12	0.11	0.10	0.09	0.08	0.08	0.07	0.07
0.24	0.13	0.12	0.11	0.10	0.09	0.09	80.0	80.0
0.26	0.14	0.13	0.12	0.11	0.10	0.09	0.09	80.0
0.28	0.16	0.14	0.13	0.12	0.11	0.10	0.09	0.09
0.30	0.17	0.15	0.14	0.13	0.12	0.11	0.10	0.09
0.32	0.18	0.16	0.15	0.13	0.12	0.11	0.11	0.10
0.34	0.19	0.17	0.15	0.14	0.13	0.12	0.11	0.11
0.36	0.20	0.18	0.16	0.15	0.14	0.13	0.12	0.11
0.38	0.21	0.19	0.17	0.16	0.15	0.14	0.13	0.12
0.40	0.22	0.20	0.18	0.17	0.15	0.14	0.13	0.13
0.42	0.23	0.21	0.19	0.18	0.16	0.15	0.14	0.13
0.44	0.24	0.22	0.20	0.18	0.17	0.16	0.15	0.14
0.46	0.26	0.23	0.21	0.19	0.18	0.16	0.15	0.14

Profitable N Rates

- A range of N rates can produce profitable yields
- Economics clearly drives the profitable N rate

Guidelines on determining which part of the MRTN range to use

Situation	Portion of Range to Use				
	low	mid	high		
> 50 % residue cover at planting			✓		
Corn follows a small grain	✓	✓			
	Use previous crop = soybean on your soil type				
Non-irrigated sands, regardless of previous crop	•	√ vious crop : v yield pote			

Guidelines on determining which part of the MRTN range to use

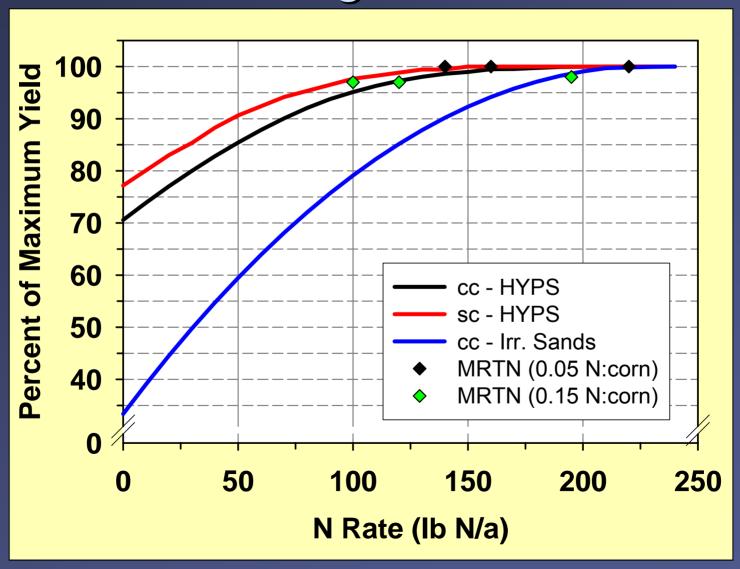
Situation	Portion of Range to Use				
	low	mid	high		
Irrigated sands with > 2.0 % organic matter	✓				
Non-sandy soils with < 2.0 % organic matter			✓		
Non-sandy soils with > 10.0 % organic matter	✓				

Guidelines on determining which part of the MRTN range to use

Situation	Portion of Range to Use		
	low	mid	high
If you think there may be carry over (residual) N	√	OR	✓ & use PPNT

- When corn follows a forage legume, green manure, or leguminous vegetable, use the table for corn following corn and take N credit
- NOTE: Starter N counts towards total N applied
- Consider using the lower end of the range to improve environmental quality

N credits


- There is no longer a N credit for soybean
 - Use values listed in the tables
- Forage legume, leguminous vegetable, and green manure N credits remain the same
- Manure N credits remain the same

N credits

- PSNT is used as a N credit
 - First determine target
 N rate, then subtract
 PSNT credit from the target N rate
 - Previously, PSNT values provided different target sidedress N rates
- PPNT is unchanged

	Yield Potential		
	High	Med.	
PSNT	N credit		
ppm	— lb N/a —		
≥ 21	*	*	
18-20	100	80	
15-17	60	80	
13-14	35	40	
11-12	10	40	
≤ 10	0	0	
* No additional N is needed			

How much yield will be lost by reducing N rates?

Summary

- Based on field data
- Solidly based on economics
 - MRTN can be calculated for various corn and N prices to show the range in profitable N application
- Helps growers easily adjust N rates for varying price climates or management level
 - Provides grower flexibility

Summary

- MRTN approach analyzes research data a little differently than previous method
 - But confirms our previous guidelines
- Provides ability to adjust for environmental costs and show profit losses when certain environmental quality criteria must be met
- Provide consistency in approaches to determining N rates across state borders