Nitrogen Availability from Manipulated Manures

Chris Baxter
UW-Platteville Soil and Crop Science
UW-Extension Nutrient Management

2007 Area Soil, Water, and Nutrient Management Meetings

Current WI Manure Nutrient Availability Guidelines

- "Book Values" vs. Lab-analyzed
 - Book values: developed from lab data collected 1998-2001
 - ~1500 liquid dairy, ~1,200 solid dairy, ~900 poultry,
 ~500 liquid swine, ~600 solid swine, smaller numbers of other types
 - Lab-analyzed: An availability factor is applied to total N (also P, K, and S)
 - Nutrient availability studies conducted in WI and elsewhere
 - WI studies on dairy manure:
 - N availability ranged from 10-54% (10-65% within study)
 - Mean = 37.5%

Average nutrient & dry matter content from solid manure (A2809)

Species	% Dry Matter	N	P ₂ O ₅	K ₂ O	S
		- Pounds	s per ton		
Dairy	24	10	5	9	1.5
Beef	35	14	9	11	1.6
Swine	20	14	10	9	2.7
Duck	35	17	21	30	3.9
Chicken	60	40	50	30	3.9
Turkey	60	40	40	30	3.9
Sheep	45	26	18	40	2.7
Horse	45	10	6	10	2.5

Variation in Wisconsin liquid dairy manure *

Nutrient	Avg	Range	S.D.
N	22	1-73	9.2
P ₂ O ₅	9	1-118	6.7
K ₂ 0	20	1-114	10.8

Values in lbs/1000 gal

^{*} Based on 746 samples, 1998 – 2001, Adapted from data presented by K. Kelling.

Estimated first-year nutrient availability factors of various manures*

Species	Ν	P ₂ O ₅	K ₂ O	S
Dairy, surface applied	30%	60%	80%	55%
Dairy, incorporated	40%	60%	80%	55%
Beef, surface applied	25%	60%	80%	55%
Beef, incorporated	35%	60%	80%	55%
Swine, solid surface applied	50%	60%	80%	55%
Swine, solid incorporated	65%	60%	80%	55%
Poultry, solid surface applied	50%	60%	80%	55%
Poultry, solid incorporated	60%	60%	80%	55%

Why is understanding Navailability important?

^{*} Assumptions: N rate =165 lb/acre, Manure total N content of 24 lb/1000gal, \$0.01/gal application costs

The Nitrogen Cycle

A2519, Soil and Applied Nitrogen, L.G. Bundy, 1998.

Factors affecting N availability from manures

Soil & Environmental factors

- Moisture
- Temperature
- Texture
- OM content

Management factors

- Application timing
- Incorporation vs. surface spread

Source factors

- Amount and forms of inorganic and organic N
- Degradability/Stability of organic-N
- Degradability/Stability of organic-C

Carbon, Nitrogen, and Soil N Availability

- Readily available (decomposable) carbon stimulates soil microorganisms and can immobilize N.
- Materials with high C/N ratio (> 20-30) typically immobilize N
- Materials with low C/N or with nondecomposable C tend to result in net N mineralization.

What Qualifies as a "Manipulated Manure"?

- Any manure that has been treated or stored such that it significantly alters the physical or chemical nature of the manure.
 - Liquid-solid separation
 - Anaerobic digestion
 - Composting

Common Liquid-Solid Separation Systems

Screw-press separators

Inclined-screen separators

How does liquid solid-separation affect manure composition?

- Removes largest particles from liquid
 - Decreases total C content and C/N ratio of liquid fraction
 - Most of N and P are associated with smallest particles
- Decreases in total N content are variable, but often less than 10%.
 - Greater decreases can be achieved with use of flocculants (i.e. PAM) or more sophisticated separation/treatment systems

Effect of Separation on C and N contents of Liquid Fraction on 4 WI Dairy Farms

Farm	Total C (%)		Total N (%)		C/N	
	Before	After	Before	After	Before	After
A	3.36	3.22	0.30	0.31	11.2	10.4
В	1.09	0.44	0.15	0.14	7.44	3.17
C*	1.95	1.20	0.25	0.24	7.66	5.00
D*	1.97	0.90	0.30	0.24	6.67	3.76

^{*} On farms C and D separation was performed on digested manure

Anaerobic digestion

- Converts manure into simple organic compounds and biogas products
- Microbes (bacteria) do the work:
 - Psychrophilic: ambient temps
 - Mesophylic: 95°F
 - Thermophylic: 165°F
 - Most efficient biogas conversion
 - Require substrates

Effect of Anaerobic Digestion on Forms and availability of C and N

- Easily decomposed C forms converted to biogas
- Organic N forms mineralized to NH₄
- Loss of gaseous NH₃
- Liquid digestate typically has lower
 C/N ratio, higher NH₄-N than raw
 manure

Changes in C and N forms during Anaerobic digestion*

	Raw	Digested	
	Manure	Manure	
Total Solids (%):	7.4	4.7	
F at (%):	1.1	1.1	
Protein (%):	1.2	1.0	Decempesable
Glucose (%):	0.4	-	Decomposable
C ellulose (%):	3.5	1.4	forms of C lost
Ash (%):	1.2	1.2	
V olatile Solids (%):	6.2	3.5	
TSS (mg/l):	58,893	54,232	
BOD (mg/l):	18,057	8,113	
TKN (%):	0.35	0.35	
Ammonia-N (%):	0.15	0.18	Organic N decreases,
Organic N (%):	0.20	0.17	ammonium increases
Total P (ppm):	589	643	
Total K (ppm):	2,331	2,287	
pH:	7.5	8.3	

^{*} Thermophilic complete mix digestion systems with approx. 10% added substrates, data are averages of multiple samplings at three WI digester facilities.

Composting

- Managed aerobic decomposition
- Easily decomposable carbon lost as CO₂
- Total N mass losses from composting can exceed 60%, but increases in total N concentration are often observed
- Inorganic NH₄-N decreases due to volatilization or conversion to org.-N
- NO₃-N concentrations typically increase compared to raw manure

Composting Basics

Changes in Total-N and Ammonium-N in Three Manure Composts

- Concentration of total
 N increased due to
 mass losses related to
 decomposition
- NH₄-N concentration decreased in all manure types
- Detectable concentrations of NO₃-N in all composts (data not shown).

What can I do if I think that I'm not accurately crediting N from treated manures?

- If you haven't already done so, test manure.
 - Liquid
 - Total N, NH₄-N
 - Solids
 - Total C, Total N, NH₄-N, NO₃-N (composts)
- When using materials with a high C/N ratio (>50), check soil N with pre-sidedress NO₃ test.
- Use guidelines that account for the amount of inorganic-N (NH₄, NO₃) in the manures.

Guidelines for Estimating 1st Year N Availability of Treated Manures

- Guidelines assume all of inorganic N is available, plus 25% of organic-N (10% if high C/N ratio)
- Liquid Manures
 - Incorporated
 NH₄-N + [0.25 x (Total N NH₄-N)

```
(0.5 \times NH_4-N) + [0.25 \times (Total N - NH_4-N)]
```

Guidelines for Estimating 1st Year N Availability of Treated Manures

- Solid Manure (C/N < 50)</p>
 - o Incorporated: $NH_4-N + NO_3-N + [0.25 \times (TN - NH_4-N - NO_3-N)]$
 - Not Incorporated $(0.05 \times NH_4-N) + NO_3-N + [0.25 \times (TN NH_4-N NO_3-N)]$
- Solid Manure (C/N > 50)
 - Incorporated:
 NH₄-N + NO₃-N + [0.1 x (TN NH₄-N NO₃-N)]
 - On Not Incorporated $(0.5 \times NH_4-N) + NO_3-N + [0.1 \times (TN NH_4-N NO_3-N)]$

Example using guidelines for treated manures

- Treated liquid manure with total N content of 28 lb N/1000 gal and NH₄-N = 15 lb/1000 gal being used to meet N need of corn crop (rec. = 140 lb N/acre)
 - Standard recommendation (incorp):
 Avail N = 28 lb/1000 gal x 0.4 = 11.2 lb/1000 gal
 Recommendation = 140 / 11.2 = 12,500 gallons/acre
 - New recommendation:
 Avail N = 15 + [0.25 x (28-15)] = 18 lb/1000 gal
 Recommendation = 140 / 18 = 7,800 gallons/acre

On-going Research to Determine the Effect of Treatment on Manure N Availability

- 21 dairy manure samples collected from various farms. Treatments include
 - Anaerobic digestion (mesophilic and thermophilic)
 - Composting (bedded pack and active aeration)
 - Liquid/Solid separation (various separator types)
- Laboratory incubations being conducted on 5 representative WI soils
- Potentially available N will be calculated and related to manure composition data
- Expected outcomes:
 - Better understanding of the effect of manure treatment on manure C and N
 - Improved prediction of manure N availability

Summary

- Manure treatment has the potential to significantly alter the composition of manure and affect manure N availability.
- Standard manure N recommendations do not account for changes in N availability due to changes in N and/or C forms.
- Producers concerned with N availability values should have manure analyzed for NH₄-N, NO₃-N_, and C/N. Apply appropriate calculation for estimating available N, follow up with in-season soil nitrate testing.
- Stay tuned for outcomes of on-going research!

