Advantages and disadvantages of controlled-release fertilizers

Matt Ruark Dept. of Soil Science WI FFVC, 1/17/2012

Outline

- Why consider slow-release N fertilizers?
- Defining "slow-release"
- Types of slow-release N products
 - Mechanisms
- Evaluating your need for slow-release

Why consider slow-release N

- There is a fundamental flaw in how we apply N fertilizer – we don't apply N as the crop needs it.
- In some cases, applying all N at preplant does not result in optimal use of N
- N is subject to environmental losses

Environmental losses of N

- Volatilization
- Denitrification
- Leaching
- Runoff

Why consider slow-release N

- Consider slow-release N when attempting to reduce environmental losses
- Slow-release fertilizer is becoming more cost effective
- Consider your soil system and cropping system and evaluate which N losses may be occurring and hindering <u>efficiency</u>

The value of increasing efficiency

Efficiency = more N applied taken up by the crop

- #1 Increase in yield with same fertilizer rate
- #2 Maintain yield with reduction in rate
- #3 Increase in yield with decrease in rate
- #4 Large increase in yield with increase in rate (in each case more N is taken up per unit applied!)

Disclaimer

- Products mentioned in this presentation to not reflect an endorsement of that product.
- Likewise, a lack of mention does not imply that a product is not recommended or available for use.

What does "controlled-release" mean?

Terms sometimes used synonymously

- Slow-release
- Controlled-release
- Delayed-release

Preferred term that encompasses all types of products: Fertilizer technologies

Fertilizer Technologies

Three general categories:

- Uncoated, controlled-release,
- Coated, controlled-release
- Bio-inhibitors
 - Not really "slow-release" per se
 - Inhibit microbial processes that convert N into plant available forms (and thus making the N susceptible to environmental losses)

Slowly (or relatively slowly) parse N into soil environment

Uncoated, slow-release

- Urea-formaldehyde reaction products
 - Decompose in soil by chemical processes,
 biological processes, or a combination of both
- Isobutylidene diurea (IBDU)
 - Relies solely on soil chemical processes to breakdown product.
- Inorganic salts
 - Magnesium ammonium phosphate

Coated, slow-release

- Sulfur-coated urea
 - Releases N through oxidation of S coating
 - Used for turf fertilization
- Polymer-coated (or Poly-coated) urea

Coated, slow-release N

Polymer-coated

- Urea is coated with special polymer coating – special to each manufacturer.
- Water moves in through coating to dissolve urea
- N diffuses out through porous polymer membrane

Coated, slow-release

- Popular for conventional agriculture systems
- ESN® (Environmentally Smart Nitrogen, Agrium, Calgary, AB)
- Polyon ® (Agrium, Calgary, AB)
- Nutricote ® (Chisso-Ashahi Fertilizer Co., Ltd., Tokyo, Japan)

Coated, slow release (PCU)

- Beneficial in reducing split applications in sand soils / potato (Wilson et al., 2009) MN
- Greater utilization of N in corn, barley, and potato (Shoji et al., 2001) CO
- Reduction in N leaching loss (Pack et al., 2006) on sandy soils. FL
- PCU increased corn yields on low-lying areas (subject to denitrification losses) (Noellsch et al., 2009) MO
- Good alternative to split application on corn in sandy soils (Bundy – 2004) WI

Bio-inhibitors

Urease inhibitors

Nitrification inhibitors

Urease Inhibitors – Volatilization

Soil pH effects on percent N

	Ammonia-based N				
Soil pH	Ammonia (NH ₃)	Ammonium (NH ₄ +)			
	%				
6	0.06	99.94			
7	0.6	99.4			
8	5.4	94.6			
9	36.5	63.5			

Options for controlling volatilization

- Incorporate into soil
- Irrigate into soil
- Rainfall occurs with 2-3 days
- Apply urease inhibitor
- If not, volatilization losses can be 15-20% of the N applied.
- Maximum of 30% loss

Urease inhibitors

- N-(n-butyl) triophosphoric triamide (NBPT)
- Agrotain ® (Agrotain, Inc., LLC, Corydon, KY)
- Can be added to urea or mixed with UAN

Urease inhibitors

- Urease inhibitors kill or chemically inhibits the activity of the soil enzyme urease
- This causes the urea to not breakdown as quickly, providing time for rainfall to move urea into the soil
- Can inhibit for 2 weeks or more depending on conditions
- Warm temps and wetter conditions cause urease to repopulate faster

Urease inhibitors

Potential benefits:

- On <u>no-till</u> or reduced tillage systems with surface application of N
- Allows flexibility for application timing
- On soils that have factors that favor ammonia loss

However, when there are not conditions for volatilization, urease inhibitors have little to no value

Nitrification inhibitors

Delay conversion of NH₄⁺ to NO₃⁻

Delays conversion 2-4 weeks depending on pH and temp

Nitrification inhibitors

Value occurs when NO₃- losses are high – from leaching or denitrification

- Tile drained soils (when leaching potential is high)
- Wet soils / poorly drained soils
- Fall applications
- Fertilizers containing NH₄+
- No-till systems

Table 3. Effects on Grain Yields of Corn Grown with Conventional and No-Till Systems from Addition of Nitrification Inhibitors to Fall- and Spring-Applied Ammoniacal Fertilizers.¹

Location	Time of application	No. of experiments	No. of yield increases from NI ₂	% Yield increase from NI ₃
Indiana	Fall	24	17	12.5
	Spring	51	29	5.8
	Spring (no-till)	12	9	10.0
No. Illinois	Fall	12	5	5.0
	Spring	14	2	-1.0
So. Illinois	Fall (NH ₃)	7	7	4.6
	Spring (ŇH ₃)	9	7	4.6
	Spring (no-till)	2	2	8.5
	Fall (N solution)	5	4	3.3
	Spring (N solution)	5	2	-1.2
Kentucky	Spring (no-till)	8	7	14.3
Wisconsin	Fall	2	1	4.7
	Spring	2	0	1.5

¹ Adapted from R. G. Hoeft 1984. Current status of nitrification inhibitors. In R. O. Hauck (ed.) Nitrogen in Crop Production. Am. Soc. of Agronomy, Madison, Wi.

² Significant at 95% probability level.

³ Average percent yield increase across all N rates and locations.

Nitrification products

Nitrapyrin [2-chloro-6-(trichloromethyl)-piridine)]

- N-Serve® (Dow AgroSciences LLC, Indianapolis, IN) – only labeled for corn, sorghum, and wheat.
- Instinct™ (Dow AgroSciences)

Dicyandiamide (DCD)

 SuperU® (Agrotain) – contatins Agrotain and DCD

Nitrification inhibitors

- Not necessary for above optimum levels of N
- Not necessary when applying sidedress
- Do not work well on coarse textured soils
- With the low CEC, NH₄+ can leach out of zone containing inhibitor

Fertilizer technologies

- Uncoated, slow-release
 - specialty crops
- PCU
 - Sandy soils, prolonged saturated soils
- Urease inhibitor
 - Surface applied urea, no till systems
- Nitrification inhibitor
 - High potential for nitrate loss (leaching, denitrification), no till, fall applications

Some quick economics

Based on data from mid-March, 2011

```
• Urea = $481 \text{ ton} (46% N)
```

•
$$ESN = $650 \text{ ton}$$
 (44% N)

- Dr. Tom Bruulsema, International Plant Nutrition Institute.
- IPNI Plant Nutrition Today, Winter 2009-2010, No. 1

- #1 Do you know the mode of action and is it relevant to your crop, soil and climate?
 - All the things we discussed here today

- #2 How as the product performed in your region/cropping system?
 - Look for regional data
 - University conducted research

- #3 How does the product perform in your fields?
 - On-farm tests, replicated strip trials

- #4 Does the product enhance your ability to plant at the optimum time?
 - Can this product allow for improvements to management?

- #5 Do you have the opportunity to improve?
 - How much N are you removing?
 - What the ratio of N removed from the system (in fruit or plant material) to the amount of N you apply?

#6 - What opportunities exist for innovation? (i.e. what haven't we thought of yet?)

Questions? Thoughts? Concerns?