PHOSPHORUS BASICS

Larry G. Bundy
Dept. of Soil Science
University of Wisconsin

Phosphorus Terminology

- Phosphorus (P) = element name and symbol
- P_2O_5 = phosphate (oxide)
 - Amount of P in fertilizers
 - ✓ Rate of P to apply in recommendations
 - √ Lb P₂O₅/acre
- $H_2PO_4^{-1}$, $HPO_4^{2^{-1}}$ = ionic forms of P that plants use

Forms & Concentrations of Phosphorus (P) in Soils

Form

Concentration (ppm)

Total 1000

Soil test P (available) 20-50

Soil solution 0.01-0.30

The Soil Phosphorus Cycle. (Pierzynski et al., 1994)

Adsorption and Desorption of Phosphorus

- Adsorption: removal of ionic P (H₂PO₄⁻, HPO₄²⁻) from solution by reaction with solid phase of soil.
- Solid phase: clays, oxides or hydroxides of Fe and Al, calcium carbonates, organic matter.
- Desorption (labile P): Portion of adsorbed P available for plant uptake, extraction, or measured by soil test.

Phosphorus (P) Reactions in Soils

- Soluble P additions (fertilizers) react quickly to form slowly soluble compounds:
 - Sorbed P
 - Clays
 - Al and Fe oxides
 - Secondary P minerals (precipitation/dissolution)
 - Ca, Fe, Al phosphates

Interpreting Soil P Tests

	Soil test P, ppm		
Crop	Optimum	No response	
Alfalfa	18-25	>35	
Corn	15-20	>30	
Soybean	10-15	>20	

Medium and fine-textured soils, Bray P-1 test

Average Soil Test P in Wisconsin

SOIL PHOSPHORUS BUFFERING CAPACITY

 Soil test P changes slowly with P additions or removals.

 Ave. 18 lb. P₂O₅/acre needed to change P test by 1 ppm

Soil Test P Changes Slowly

Example:

- –Soil P test = 100 ppm = EH
- Optimum soil test = 20 ppm
- -Removal needed for EH to Opt. = 18 lb P_2O_5 /acre x 80 ppm = 1440 lb P_2O_5
- -Corn grain removes 60 lb P₂O₅/acre/year
- -1440/60 = 24 yrs with no added P for EH change to optimum.

Decrease in soil test P in a corn-soybean rotation for 26 years. (McCollum, 1991)

Relationship between P soil test and phosphorus fertilizer recommendation

Soil Test	Recommendation
Low, very low	Crop removal +
Optimum	Crop removal
High	½ Crop removal
Excessively High	None

PHOSPHORUS AND WATER QUALITY

- Phosphorus additions to natural waters can stimulate weed and algae growth.
- Vegetative growth and oxygen depletion reduce water quality.
- Phosphorus losses from agriculture can be a major source of P entering lakes and streams.

Phosphorus Transport and Fate in Ecosystems. (Pierzynski et al., 1994)

Phosphorus (P) Loss Processes

- In surface runoff:
 - Soluble (dissolved) P
 - Particulate P (soil particles)

- By leaching
 - Does phosphorus leach?

PHOSPHORUS (P) IN RUNOFF

- Dissolved (soluble P) (DP)
- Total P (TP)
- Particulate P (PP)
- Bioavailable P (BAP)
 - ✓DP + part of PP
- Bioavailable particulate P (BPP)
 - \checkmark BAP DP = BPP

Critical Phosphorus Concentrations for **Surface Waters**

Type	of
wate	er

Form of P

P conc. (ppm)

Lakes Streams Soluble P

0.01

Total P

0.10

Lakes

Total P

0.05

Relationship between Bray P-1 (0-2 cm) and DRP in runoff.

Phosphorus Saturation Percentage

- Method of measuring the soil's ability to hold P
- Indicates the % of the soil's P holding capacity that is occupied
- Netherlands work indicates that 25% saturation is the threshold or critical value for unacceptable P loss

Relationship between Bray P-1 extractable soil P (0-15 cm) and soil P saturation (0-2 cm).

Relationship between soil P saturation (0-2 cm) and DRP in runoff.

Phosphorus Leaching

Soil phosphorus levels in 29 fields with various biosolids application histories, Madison, WI 1999.

Parameter

Range

Years of application

1979 – 1998

No. of applications

1 - 17

Total P applied (lb/a)

167 - 2288

Soil test P values at various soil depths, biosolids survey, Madison, WI, 1999.

Soil depth	Range of Bray-1 P
(inches)	(ppm)
0 — 1	31 – 198
0 - 6	27 – 201
6 – 12	11 – 168
12 – 18	9 – 67
18 – 24	4 – 67
24 – 36	12 – 63

Biosolids P rate effect on soil test P (12-18 in.), Madison, WI, 1999.

Phosphorus leaching in a prairie and in corn production at Arlington, Wis., 1998-2000.

		Soluble P in leachate	
System	Soil test P	Concentration	Load
	ppm		- lb/acre -
Prairie	25	0.02	0.04
No-till corn	80	0.09	0.42
Chisel plow corn	90	0.05	0.38

Leachate collected in pan lysimeters at 5 ft depth.

Brye et al. (2001)

Critical Phosphorus Concentrations for **Surface Waters**

Type	of
wate	er

Form of P

P conc. (ppm)

Lakes Streams Soluble P

0.01

Total P

0.10

Lakes

Total P

0.05

EFFECT OF BUFFER WIDTH AND SLOPE ON SEDIMENT DEPOSITION

REDUCTION OF SOIL LOSS BY A 2-FT. GRASS BUFFER

Raffaele, et al., 1996

BUFFER EFFECT ON NUTRIENT REMOVAL FOLLOWING MANURE APPLICATION

Chaubey et al., 1995

MANURE AND PHOSPHORUS ISSUES

What is the Manure-Phosphorus Problem?

- P accumulates in soils where manure is applied frequently to provide crop N requirement
- Phosphorus additions exceed crop P removals
- Ratio of N to P in manure = about 4:1
- Ratio of N to P in crops = about 8:1

Relative amount of nitrogen and phosphorus in manure and used by crops

Ratio of First-Year Available N&P in Manures

Manure	N:P ratio
Dairy	3.1
Beef	1.8
Poultry	2.5
Swine	3.8

Comparison of corn nutrient needs with manure nutrient content - Nitrogen strategy

Phosphorus in runoff from simulated rainfall applied to corn systems at Arlington, Wis., Sept. 1999

Location/		P in runoff	
management	Soil test P	Soluble ,DRP	Total P
		ppm	
Chisel plow corn	17	0.04	4.2
No-till corn	11	0.03	3.2
Chisel plow + manure	38	0.07	3.0
No-till + manure	29	0.16	1.8

Phosphorus (P) and Environmental Concerns

- P losses from cropland can cause surface water quality problems.
- Soil P levels have increased.
- Manure P is a major contributor to soil P buildup.
- Land application of manure is often the only practical management option.