UNDERSTANDING SOIL PHOSPHORUS

Larry G. Bundy
Dept. of Soil Science
University of Wisconsin

Why is Understanding Soil P Important?

- Determine agronomic need for P
- Water quality issues related to phosphorus (P)
- Restructuring of nutrient management standard/rules to include control of P loss

Environmental Concerns

- Phosphorus is the major nutrient promoting algae and aquatic weed growth in freshwater lakes and streams.
 - Oxygen depletion and fish kills
 - Odor
 - Limits recreation and tourism
 - Quality of drinking water drawn from surface waters.

PHOSPHORUS AND WATER QUALITY

- Phosphorus additions to natural waters can stimulate weed and algae growth.
- Phosphorus losses from agriculture can be a major source of P entering lakes and streams.

Sources of Phosphorus to Tainter Lake, WI

Forms & Concentrations of Phosphorus (P) in Soils

Form

Concentration (ppm)

Total 1000

Soil test P (available) 20-50

Soil solution 0.01-0.30

Phosphorus (P) Reactions in Soils

- Soluble P additions (fertilizers) react quickly to form slowly soluble compounds:
 - Sorbed P
 - Clays
 - Al and Fe oxides
 - Secondary P minerals (precipitation/dissolution)
 - Ca, Fe, Al phosphates

Adsorption and Desorption of Phosphorus

- Adsorption: removal of ionic P (H₂PO₄⁻, HPO₄²⁻) from solution by reaction with solid phase of soil.
- Solid phase: clays, oxides or hydroxides of Fe and Al, calcium carbonates, organic matter.
- Desorption (labile P): Portion of adsorbed P available for plant uptake, extraction, or measured by soil test.

Phosphorus (P) Loss Processes

- In surface runoff:
 - Soluble (dissolved) P
 - Particulate P (soil particles)

- By leaching
 - Does phosphorus leach?

PHOSPHORUS (P) IN RUNOFF

- Dissolved (soluble P) (DP)
- Particulate P (PP)
- Total P (TP) Includes DP and PP
- Bioavailable P (BAP)
 - ✓ DP + part of PP

Critical Phosphorus Concentrations for Surface Waters

Type of water

Form of P

P conc. (ppm)

Lakes

Soluble P

0.01

Streams

Total P

0.10

Lakes

Total P

0.05

Relationship between Bray P-1 (0-2 cm) and DRP in runoff.

Nutrient and Pest Management Program 2002

Influence of tillage and manure

Spring manure and tillage effects on total P load in runoff at three locations.

Soil-specific effects on soluble P

Relationship between STP and DP concentration in runoff without spring applied manure.

Effect of soil extraction time on water extractable soil P concentration for two soils.

Respective soil test P (at 60-min) = 40 and 42 mg kg-1 at Lancaster and Fond du Lac. Respective DP in runoff = 0.33 and 0.93 mg L-1 at Lancaster and Fond du Lac.

Period

Interpreting Soil P Tests

	Soil test P, ppm	
Crop	Optimum	No response
Alfalfa	18-25	>35
Corn	15-20	>30
Soybean	10-15	>20

Medium and fine-textured soils, Bray P-1 test

SOIL PHOSPHORUS BUFFERING CAPACITY

 Soil test P changes slowly with P additions or removals.

 Ave. 18 lb. P₂O₅/acre needed to change P test by 1 ppm

Soil Test P Changes Slowly

• Example:

- -Soil P test = 100 ppm = EH
- Optimum soil test = 20 ppm
- -Removal needed for EH to Opt. = 18 lb P_2O_5 /acre x 80 ppm = 1440 lb P_2O_5
- -Corn grain removes 60 lb P₂O₅/acre/year
- -1440/60 = 24 yrs with no added P for EH change to optimum.

Decrease in soil test P in a corn-soybean rotation for 26 years. (McCollum, 1991)

Relationship between P soil test and phosphorus fertilizer recommendation

Soil Test	Recommendation
Low, very low	Crop removal +
Optimum	Crop removal
High	½ Crop removal
Excessively High	None

