Troubleshooting Fields Using Plant Analysis, Including Stalk Nitrate Testing

Soil, Water, & Nutrient Management Meetings November 30 – December 9, 2010

Carrie Laboski

Photo: Sam Kweskin

STALK NITRATE TESTING

Sampling guidelines

- Samples should be taken 1 to 3 weeks after black layer
- An 8" segment of stalk should be taken from 6 to 14 inches above the soil surface, remove leaf sheaths
- Stalk segments from 15 plants make one sample
- A sample should not represent more than 20 acres
- If soil characteristics or past management practices vary across the field, then separate samples should be collected for each area.
- Stalks severely damaged by insect or disease should not be used

Sample handling

- Place sample in paper bags
- Samples should be refrigerated (not frozen) if they are to be stored for more than one day before shipping
- Contact your laboratory to confirm that they run the stalk nitrate test

Interpretation

Category	Nitrate-N concentration	Interpretation
Excessive	> 2000 ppm	High probability that N availability was greater than if fertilized according to UW-Extension guidelines
Optimal	700-2000 ppm	High probability that N availability was within the range needed to maximize profitability
Low	< 700 ppm	High probability that greater N availability would have resulted in increased yields

Limitations of stalk nitrate tests

- Identifies excessive and optimal N rates more accurately on medium yield potential soils compared to high yield potential soils
- Test may occasionally incorrectly indicate that excess N was supplied to fields with:
 - Recent (within two years) history of manure application
 - Alfalfa in the rotation
 - Particularly on high yield potential soils
- Test does not provide an indication of the amount of N that was over or under supplied
- Test can be impacted by weather
 - In extremely dry years, values tend to be high
 - Values tend to be low in an extremely wet year

Accuracy of the end-of-season stalk nitrate test to categorize sites as having low, optimal, or excessive N rates on 49 medium and 49 high yield potential Wisconsin soils from 1992-1995

Soil yield	Stalk nitrate test category				
potential	Low	Optimal	Excessive		
Medium	60	92	71		
High	75	56	63		

2006 Dodge Co. stalk nitrate at MRTN plots

Influence of corn hybrid on late season stalk nitrate value for C-C at Arlington, 2010

Stalk nitrate summary

- Adequacy of any given N rate on a field is dependent upon environmental conditions
 - Basing future N rate decisions solely on 1 year's stalk nitrate values could result in poor decisions
- Stalk nitrate data collected over several years coupled with N management and growing season weather can be useful in determining if N fertilizer rates should be reduced to improve profitability

Photo credits: Todd Andraski

PLANT ANALYSIS

Plant analysis can:

- Confirm visual symptomology
- Assess a crop's response to applied nutrients
 - Where different treatments applied in the same field
 - Eg. strips with and without fertilizer added
- Determine the availability of nutrients
 - When a reliable soil test does not exist
 - Soil test calibration has not been completed
- Reveal early stages of nutrient deficiencies

Plant analysis as a diagnostic tool

To be useful, must follow some guidelines

1. Take good notes

- Written notes
 - Describe any visual symptomology
 - Where on the leaf and plant do symptoms occur?
 - Where in the field do symptoms occur?
 - How do the roots look?
 - Are nodules active?
 - Signs of compaction?
 - Weather conditions past & current
 - Crop management practices
 - Eg. planting date, hybrid/variety, tillage, pest management, etc.
 - Field history
 - Crop rotation, manure application, past problems, etc.

1. Take good notes

- Sketch a map of the affected area noting:
 - Drainage, topography, soil color, soil texture, and other features that might affect plant growth
- Photographs
 - Include close-ups and panoramas document a point in time
 - In panoramic photos, try to include a landmark
- Mark the affected areas
 - Flags or GPS boundaries

2. Obtain plant & soil samples from normal & abnormal areas

- Comparison may be more useful than using plant analysis sufficiency interpretation ranges alone
 - Hybrids/varieties may vary in their sufficient level
- Soil samples help determine if nutrient deficiency is a result of low soil nutrients or weather/field conditions
 - Eg. K deficiency caused by compaction

Photo credits: E. Birschbach

3. Sample appropriate plant part for given growth stage & adequate sample number

- Tissue nutrient concentration generally decreases as the crop matures
- Sufficiency ranges & DRIS indices (somewhat)
 developed for a specific plant part sampled at a
 specific growth stage
 - Sample incorrect part or incorrect stage can result in incorrect interpretation
- Collect adequate number of samples
 - Needs to be representative of area
 - Needs adequate tissue for lab to analyze

3. Sample appropriate plant part for given growth stage & adequate sample number

Crop	Growth Stage	Plant Part Sampled	# of Plants
Alfalfa	Bud to 1 st flower	Top 6"	30-40
Alfalfa	Harvest	Whole plant	15-20
Corn	12 inches	Whole plant	10-15
Corn	Pre-tassel	Leaf below whorl	15-20
Corn	Tassel to silk	Ear leaf	15-20
Corn	Ensiled/chopped	Whole plant	10-15
Soybean	Prior to or at initial flower	4 th petiole & leaflet or 4 th petiole only	20-25
Wheat	Tillering	Newest fully developed leaf	30-40
Wheat	Prior to heading	Newest fully developed leaf	30-40

4. Place sample in paper envelope & send to lab

- Plastic bags are not acceptable
- If soil has splashed onto plant bush it off
 - Do not wash
- Clearly lab sample
- Fill out sample submission form completely & accurately
 - Helps insure correct interpretations
- Contact lab in advance to obtain specific info.

5. Review plant & soil analysis results in conjunction with field notes

- Do the plant analysis results make sense based on field assessment?
- If no, or not sure
 - Call UWEX Co. Agent or a soil fertility specialist for assistance

Limitations of plant analysis

- Many of the previous guidelines developed because of limitations
- Remediation of nutrient deficiency not possible
 - Deficiency may have already caused yield loss
 - Crop may not respond
 - Crop may be too large
 - Unfavorable weather
- Sometimes, plant analysis can be a decision making guide for the next season's crop

Areas for agronomists to improve when sampling for plant analysis

- Submit soil samples with plant samples
- Submit paired (normal and abnormal) samples
- Sample soybean at appropriate growth stage

When using plant analysis to look for potential problems

- Don't over interpret data
- Assess the bigger picture
 - Economics
 - Temporal/weather patterns effect on nutrient availability

Summary

- Plant analysis a helpful diagnostic tool if used properly
 - Follow sampling guidelines
 AND
 - Thoroughly research field history
- Remember plant analysis is NOT a substitute for a consistent soil sampling program

Photo credits: E. Sneller

