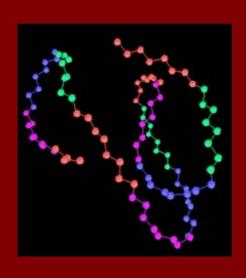
Polyacrylamide Effectiveness in Reducing Soil and P Loss from Agricultural Fields

Adam Peterson¹, Anita Thompson¹, Chris Baxter², John Norman³, Aicardo Roa-Espinosa¹


- ¹ Biological Systems Engineering UW-Madison
- ² Soil and Crop Science UW-Platteville, UW-Extension
- ³ Soil Science UW-Madison

Outline

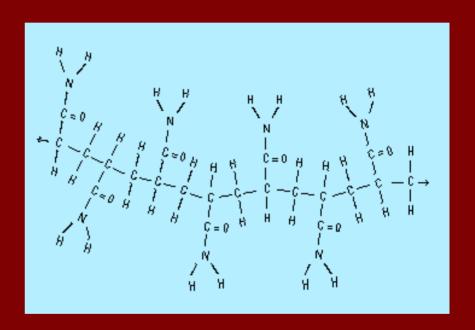
- Introduction to Polyacrylamide (PAM)
 - Basic Chemistry
 - Past uses
 - How it works
- Field Test Setup
- Results
 - Sediment Load Reduction
 - Phosphorus Load Reduction

Polyacrylamide (PAM)

- Long Molecular Chain Polymer
- Composed of repeating Acrylamide (AMD)
 Monomer Units along with other comonomer (OH⁻) units


```
FIG. 1.
Acrylamide (AMD).

CH=CH<sub>2</sub>


C=O
NH<sub>2</sub>

NH<sub>2</sub>

MW = 71.08
```

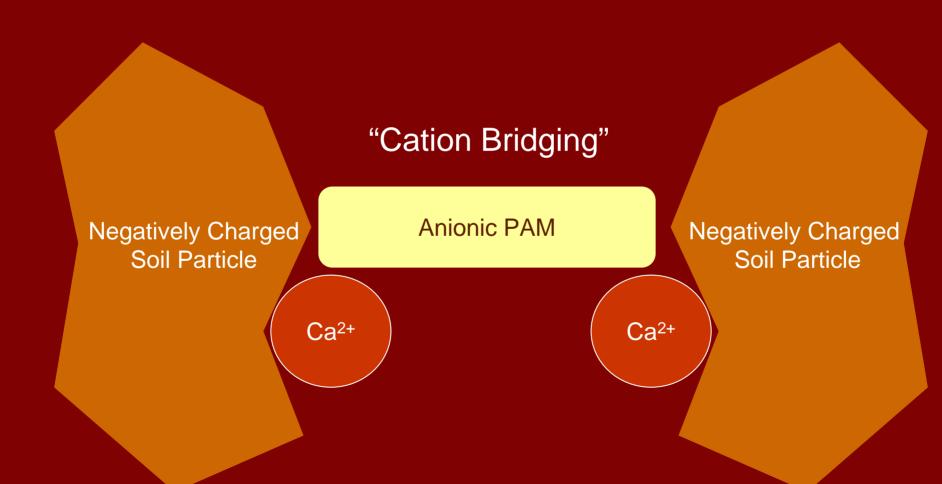
PAM for Soil Erosion

- Characteristics of most PAMs used for soil erosion applications
 - (Malik and Letey, 1991; Shainberg et al., 1990; Green et al., 2000)
 - Anionic
 - Moderate Percent Hydrolysis (~20%)
 - High Molecular Weight
- Achieved through chemical synthesis processes

How it helps prevent Erosion

- Raindrop Impact Effect
 - Soil Crusting
 - Impact destabilizes soil fraction
 - Fine fractions infiltrate
 - Clogging of sub-soil pores
 - Reduces infiltration rate thus increases surface runoff


From water on the web


ABOVE & INSET: Suface crust following cultivation and rainfall.

PAM's Effect on Soil Structure

- Binds soil particles together
- Prevents dispersion of small clay particle due to raindrop impact
 - Results in more stable soil structure, increased infiltration and reduced surface runoff
- Has been shown to be more effective in the presence of electrolytes (i.e. Ca²⁺)

PAM 101

PAM Application

- Previous PAM application studies
 - Irrigation water
 - addition of PAM in small amounts
 - Furrow irrigation stabilization with PAM

PAM Application

- Recently surface applied PAM in rain-fed agricultural areas has been tested
- Studied at very high application rates
 - (20 kg/ha up to 80 kg/ha)
- Has not been widely tested at lower "agronomic" rates

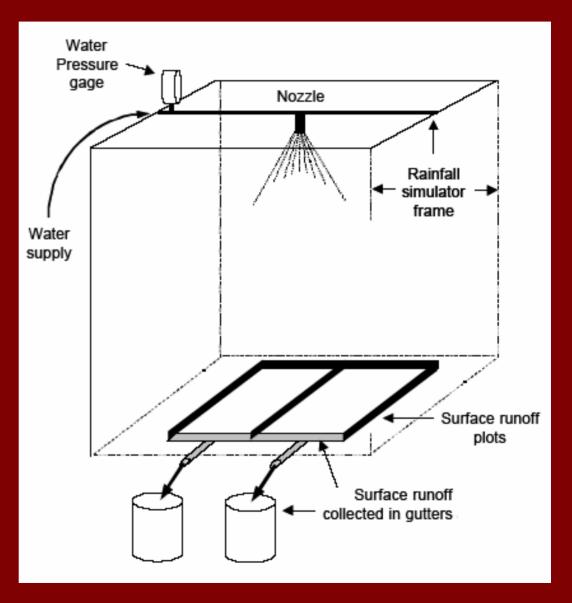
Experimental Approach

 Test PAM's effectiveness and longevity of reducing soil and P loss from agricultural fields at two locations in Wisconsin

- Arlington Agricultural Research Station
- UW-Platteville Pioneer Farm

Experimental Approach

- Surface applied PAM emulsion at a low application rate
 (5 kg ha⁻¹)
 - Soil Net EM-1000-50,
 a liquid emulsion of polyacrylamides,
 calcium, inorganic
 salts, water, oil and surfactant


PAM Tests

- Rainfall Simulation
 - Each plot exposed to the same rainfall intensity (~3.0 in hr⁻¹)
 - Simulation for 30 minutes after initial runoff occurred
 - 3 replicates

Experimental Approach

- RainfallSimulator
 - 10' x 10' x 8'
 - set up over each plot for testing
 - Paired control and treatment

Rainfall Simulator

Tarps hung to prevent wind effects

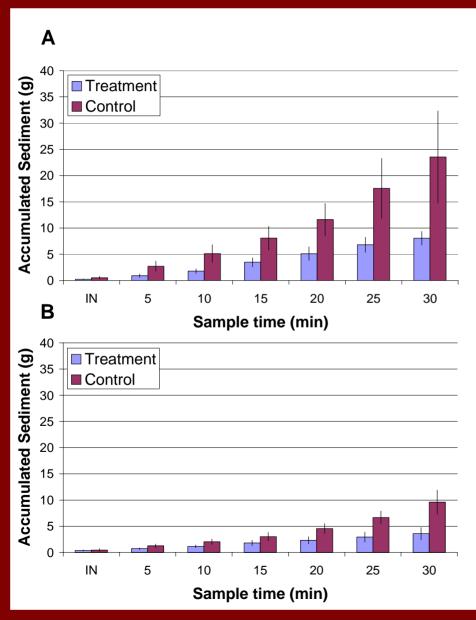
Nozzle simulating rainfall

Rainfall Simulator

Field setup: Generator, 500 gallon tank, pump, rainfall simulator

Experimental Approach

- Samples taken in 5 minute intervals from start of runoff
 - Sediment concentration and flow rate calculated
 - Used to calculate sediment load
 - Analyzed for total phosphorus

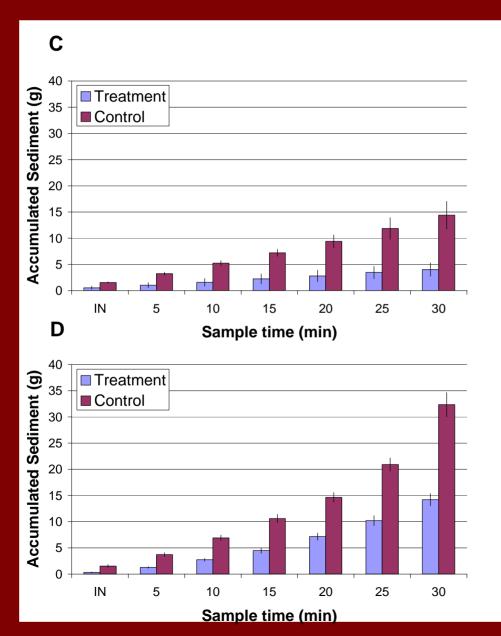

PAM Test Intervals

- 2-day interval
 - PAM application two days prior to testing (approximately two weeks after planting)
- 3-week interval
 - PAM application three weeks prior to testing (approximately four weeks after planting)
- 11-week interval
 - PAM application 11 weeks prior to testing (approximately 13 weeks after planting)

Results

Sediment Load

2-Day Interval

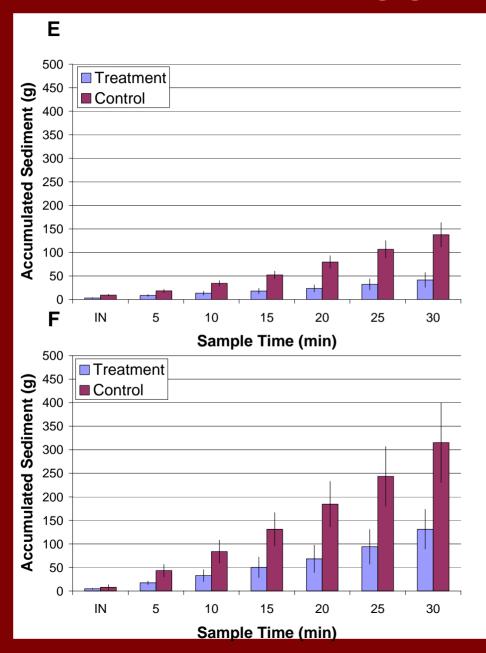


Platteville Pioneer Farm

Sample Time	% Reduction
IN	60.8
5	66.0
10	65.1
15	56.8
20	56.0
25	61.2
30	65.8

Sample Time	% Reduction
IN	18.4
5	42.8
10	43.4
15	39.7
20	49.0
25	55.8
30	62.6

3-week Interval



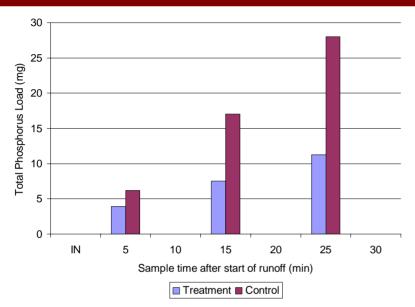
Platteville Pioneer Farm

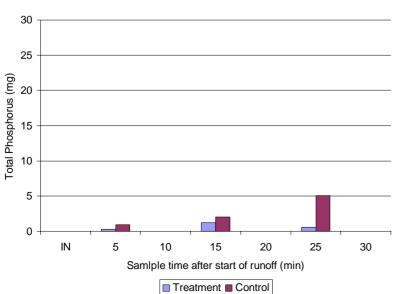
Sample Time	% Reduction
IN	65.1
5	68.4
10	69.7
15	69.0
20	70.1
25	70.7
30	72.0

Sample Time	% Reduction
IN	78.7
5	66.0
10	60.5
15	57.7
20	51.2
25	51.2
30	56.1

11-week Interval

Platteville Pioneer Farm

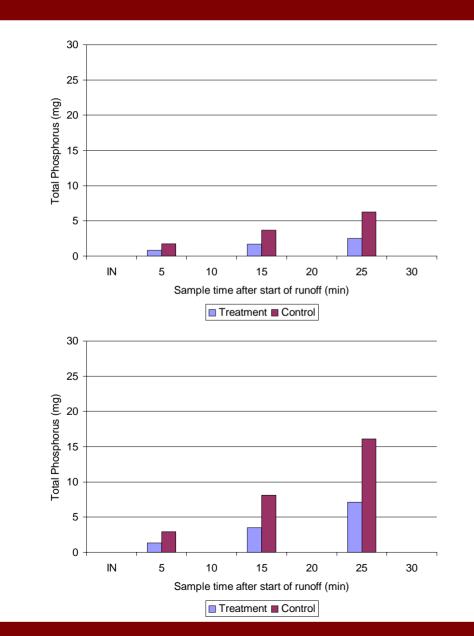

Sample Time	% Reduction
IN	54.6
5	39.3
10	45.1
15	49.5
20	55.7
25	53.9
30	51.3


% Reduction
41.6
60.1
61.0
61.8
62.9
61.4
58.4

Results

- Sediment Load
- Total Phosphorus

2-day Interval

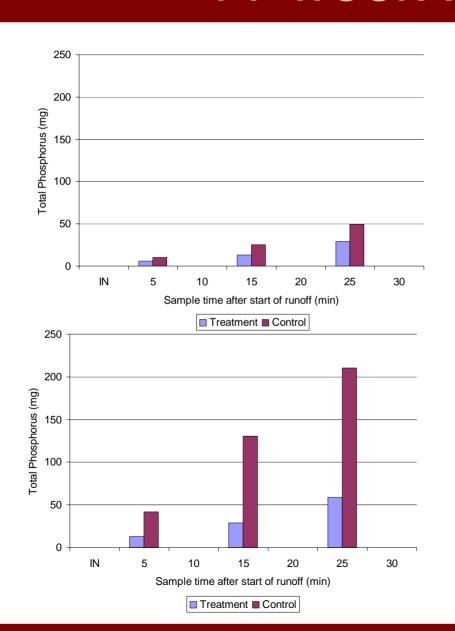


Platteville Pioneer Farm	
Sample Time	% Reduction
IN	
5	37.1
10	
15	55.6
20	-
25	59.9

30

Anington Agricultural Research Station	
Sample Time	% Reduction
IN	-
5	70.5
10	
15	39.4
20	-
25	88.7
30	

3-week Interval

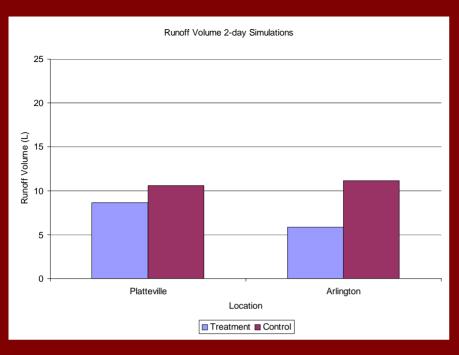


Platteville Pioneer Farm

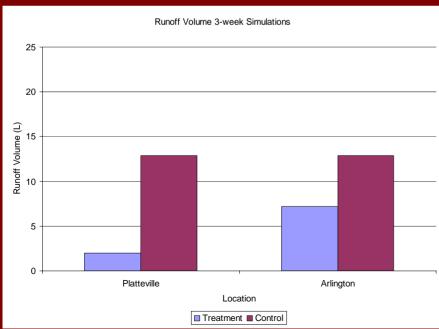
Sample Time	% Reduction
IN	
5	53.7
10	
15	53.4
20	-
25	60.0
30	

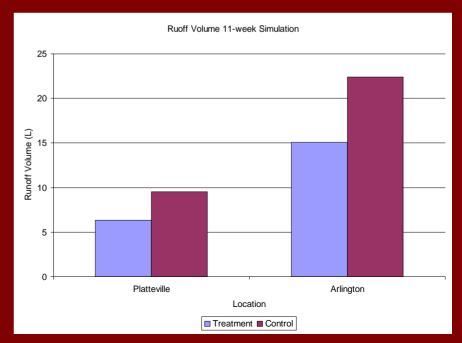
Sample Time	% Reduction
IN	
5	53.3
10	
15	56.7
20	-
25	55.7
30	

11-week Interval


Platteville Pioneer Farm

Sample Time	% Reduction
IN	
5	42.1
10	
15	47.7
20	
25	40.9
30	-


Sample Time	% Reduction
IN	
5	68.9
10	
15	78.0
20	
25	72.0


Results

- Sediment Load
- Total Phosphorus
- Runoff Volume

Total Runoff Volume reduced during each test

Summary

- Plots that received 5 kg/ha (4.5 lb/ac) Soil
 Net EM-1000-50 showed:
 - Lower total sediment losses (51-72% reduction)
 - Lower runoff volumes (18-84% reduction)
 - Lower total P losses (41-89% reduction)
- Effects were evident at 11 weeks after application

Feasibility

- Soil Net EM-1000-50
 - Effectively Reduced Soil and P loss throughout the growing season
 - Estimated Cost approximately \$10/acre
- Potential Applications:
 - Following low-residue cropping systems (soybeans, corn silage), before canopy is established
 - Highly erodable soils

Thank You!

