NITROGEN APPLICATIONS AND RESIDUE DECOMPOSITION

Larry G. Bundy & Todd W. Andraski
Department of Soil Science
University of Wisconsin

Objectives

- Determine the influence of pre-season (fall) N fertilization at low rates (30 and 100 lb N/acre) on corn residue decomposition in no-till corn production.
- Monitor the effects of pre-season (fall) N treatments and residue chopping on residue quantity, carbon and nitrogen composition, and soil temperature.

Treatments

- Times and rates of N (UAN and ammonium sulfate)
- Sulfur as gypsum applied to equalize sulfur
- Residue fall chopped or not chopped.

Measurements

- Soil nitrate (Fall, PPNT, PSNT)
- Residue quantity and composition
- Soil temperature, 4 in. depth
- Corn silage and grain yield

Treatments N timing, source, & rate (lb N/a)

Fall Spring Total 0 0 0 30 UAN 0 30 30 AS 0 30 100 AS 0 100 0 100 AS 100 30 UAN 160 UAN 190 30 AS 160 AS 190 0 190 UAN 190 0 190 UAN 190			
30 UAN 0 30 30 AS 0 30 100 AS 0 100 0 100 AS 100 30 UAN 160 UAN 190 30 AS 160 AS 190 0 190 UAN 190	Fall	Spring	Total
30 AS 0 30 100 AS 0 100 0 100 AS 100 30 UAN 160 UAN 190 30 AS 160 AS 190 0 190 UAN 190	0	0	0
100 AS 0 100 0 100 AS 100 30 UAN 160 UAN 190 30 AS 160 AS 190 0 190 UAN 190	30 UAN	0	30
0 100 AS 100 30 UAN 160 UAN 190 30 AS 160 AS 190 0 190 UAN 190	30 AS	0	30
30 UAN 160 UAN 190 30 AS 160 AS 190 0 190 UAN 190	100 AS	0	100
30 AS 160 AS 190 0 190 UAN 190	0	100 AS	100
0 190 UAN 190	30 UAN	160 UAN	190
	30 AS	160 AS	190
0 100 Δ \$ 100	0	190 UAN	190
190 AS 190	0	190 AS	190
100 AS 90 UAN 190	100 AS	90 UAN	190

Nylon mesh bag for residue quantity &

composition measurements

Carbon and nitrogen transformations in corn residue decomposition

Carbon dioxide

Soil nitrate-N content at preplant and PSNT, Arlington, 1999.

	PPNT	PSNT
Treatment	Apr 99	Jun 99
- lb N/acre -	Nitrate-N, lb	/acre (0-3 ft)
0	156	96
30 UAN	160	92
30 AS	180	92

April – June rainfall = 5.4 inches over normal

Soil nitrate-N content at preplant and PSNT, Arlington, 2000.

	PPNT	PSNT
Treatment	14 Apr 00	19 Jun 00
- lb N/acre -	Nitrate-N, lb	/acre (0-3 ft)
0	131	40
30 UAN	115	44
30 AS	100	56

April - June rainfall = 10 inches over normal

Preplant soil nitrate-N content Arlington, WI, 1999-2001

Treatment	Apr 99	14 Apr 00 3	0 Apr 01
- lb N/acre -	Nitra	te-N, 1b/acre (0-2	3 ft)
0	156	131	49
30 UAN	160	115	70
30 AS	180	100	58

Back to Teaching Materials

Dry matter amounts at several times in the chopped residue treatment,

Arlington, WI 1998-2001

Sampling	Residue (lb dry matter/acre)			
time	1998-99	1999-2000	2000-2001	
November	7030	5667	6023	
April	6121	5102	4958	
June	5417	4724	4799	
September		1890	3621	

Effect of N treatment on corn residue decomposition, Arlington, 1998-1999.

	Date			
Fall N	17 Dec 98	4 Apr 99	28 Jun 99	
-lb N/acre-	% residue remaining			
0	94	88	80	
30 UAN	95	87	73	
30 AS	95	86	79	
100 AS	97	87	76	

Effect of N treatment on corn residue decomposition, Arlington, 1999-2000.

	Date		
Fall N	30 Apr 00	27 Jun 00	26 Sep 00
-lb N/acre-	% residue remaining		
0	92 a	87	31
30 UAN	94 a	90	29
30 AS	97 a	79	35
100 AS	76 b	78	35

Effect of N treatment on corn residue decomposition, Arlington, 2000 -2001.

	Date			
Fall N	24 Apr 01	29 Jun 01	13 Sep 01	
-lb N/acre-	% residue remaining			
0	79	88 a	73	
30 UAN	87	85 a	56	
30 AS	84	71 b	49	
100 AS	79	75 b	62	

Back to Teaching Materials

Carbon/nitrogen ratio and N content of corn residue at various dates, Arlington, WI, 1998-1999.

		N content
Date	C/N ratio	1b N/acre
17 Nov 98	45	67
17 Dec 98	32	88
20 Apr 99	60	48
28 Jun 99	51	47

Carbon/nitrogen ratio and N content of corn residue at various dates, Arlington, WI, 1999-2000.

		N content
Date	C/N ratio	lb N/acre
10 Nov 99	74	33
30 Apr 00	47	48
27 Jun 00	37	45
26 Sep 00	28	22

Back to Teaching Materials

Carbon/nitrogen ratio and N content of corn residue at various dates, Arlington, WI, 2000 - 2001.

		N content
Date	C/N ratio	lb N/acre
15 Nov 00	88	28
24 Apr 01	62	30
29 Jun 01	57	26
13 Sep 01	42	21

Back to Teaching Materials

Nitrogen timing, source, & rate effects on corn grain yield, Arlington, 1999-2001

N timing & ra	ate (lb N/acre)	Yield 1999	Yield 2000	Yield 2001
Fall	Spring		bu/acre	
0	0	167 b	63 e	105 e
30 UAN	0	180 b	60 e	126 d
30 AS	0	178 b	66 e	126 d
100 AS	0	209 a	112 d	175 с
0	100 AS	216 a	128 cd	171 c
30 UAN	160 UAN	219 a	146 abc	191 b
30 AS	160 AS	220 a	158 a	202 ab
0	190 UAN	219 a	148 ab	194 b
0	190 AS	216 a	160 a	208 a
100 AS	90 UAN	220 a	136 bc	207 a

- Time and source of N application and residue chopping did not influence N mineralization rates or soil temperature.
- In 2001, residue decomposition measured in June was increased by fall N treatments.
- This response was not seen in the two previous years.

- Preplant soil nitrate and residue N content were also lower in 2001.
- The extent of residue decomposition was lower in 2001.
- Fall N applications in 2000 may have furnished N to stimulate residue decomposition in an otherwise N deficient environment.

- About 60 to 70% of corn residue decomposed during the subsequent growing season.
- C/N ratio of residue usually decreased from the initial November value through the following September.
- Most of this change was due to carbon loss.

- N rate affected yield, and responses to N timing and source treatments suggested N loss from fall additions and ammonia volatilization from UAN.
- Yields were not improved by fall N additions compared to similar rates of spring N.
- Fall N did not influence soil temperature or N mineralization

- For production, fall N additions to promote residue decomposition do not appear to be justified.
- Improvements in yield or other agronomic benefits were not observed in this study.
- Fall N can increase potential for over winter N loss.
- Ammonium sulfate provided more consistent crop responses than UAN solution.

Preplant soil nitrate-N content Arlington, WI 2001.

	PPNT	PSNT	
Treatment	30 Apr 01	20 Jun 01	
- lb N/acre -	Nitrate-N, lb/acre (0-3 ft)		
0	49		
30 UAN	70		
30 AS	58		

April – June rainfall = 2.89 inches over normal

N timing, source, & rate effects on corn grain yield, Arlington, 1999 and 2000

N Timing and rate (lb N/acre)		Yield 99	Yield 00	
Fal	1 S_1	oring	bu/acre	
0		0	167 b	63 e
30 U	AN	0	180 b	60 e
30 A	AS	0	178 b	66 e
100 A	AS	0	209 a	112 d
0	10	0 AS	216 a	128 cd
30 U	AN 160	UAN	219 a	146 abc
30 A	ΔS 16	0 AS	220 a	158 a
0	190	UAN	219 a	148 ab
0	19	0 AS	216 a	160 a
100 A	AS 90	UAN	220 a	136 bc