Results from On-farm N Rate Response Trials

Larry G. Bundy
Dept. of Soil Science
University of Wisconsin

Questions?

- Are N rate recommendations too low?
- · High yield producers use higher rates.
- Are yields held back by N rates that are too low?

Nitrogen Rate and Timing Studies - Wisconsin

- Jefferson, Dodge, Walworth Cos.- Matt Hanson
 - Silt loam soils
 - 21 expts. 1999-2002, Soybean/corn, corn/corn
- South Central Wis. Kevin Shelley, NPM program
 - Silt loam soils
 - 11 trials, 1999-2002, Soybean/corn, corn/corn
- Portage & Waupaca Cos. Bill Pearson
 - Sandy loam soils
 - 13 Expts., 1997-1999, Alfalfa/corn; corn/corn

Locations of on-farm nitrogen rate response experiments

Nitrogen Recommendations for Corn

	Sands & loamy sand		Other soils		
			Yield Potential		
Organic		Non-		Very high/	
matter	Irrigated	irrigated	Med/low	high	
%	lb N/acre				
<2	200	120	150	180	
2-9.9	160	110	120	160	
10-20	120	100	90	120	
>20	80	80	80	80	

Optimum N Rate for Corn

- Soil-specific characteristic
- Not affected by annual variations in yield
- Year-specific adjustments for soil nitrate and organic N inputs needed

Adjustments to Base N Rates

- Nitrogen Credits
 - -Legumes
 - -Manure
- Soil nitrate tests
- Tillage/residue adjustment

Nitrogen rate effects on corn relative yield following soybean. 12 trials, Dodge, Jefferson, Walworth Cos., 1999-2001.

Data from M..Hanson, Jefferson Co.

59 Site-Years in Iowa Corn-Soybean Rotation

Kevin Shelley UW Nutrient and Pest Management Program South-Central Region

On-Farm Nitrogen Rate and Application Time for Corn Comparisons

1999 **– 2002**: 11 Comparisons on 6 Farms

ArlingtonDeForest/ KeyserSun PrairieCottage Grove

Janesville

Corn response to preplant and sidedress N, Sun Prairie, 2001. Corn after soybeans

<u>Reps</u>	Preplant N <u>(82-0-0)</u>	Sidedress N (28% UAN)	Total N (lbs/acre)	Average Yield (bu/acre)	Marginal* Return <u>(\$/acre)</u>
2	0	120	120	215	370.12
2	0	150	150	210	352.00
3	150	30	180	207	341.85

^{*} Corn price = \$1.90/bu; N = \$.23/lb (82-0-0), \$.30/lb (28% UAN);

Preplant N application = \$5/acre; sidedress N application at cultivation

Preplant N application = \$5/acre; sidedress N application at cultivation = \$2/acre; Ringwood silt loam, 3.2% OM

Corn response to N rates and timing, Stoughton, 2002. Corn after corn.

<u>Reps</u>	Fall N (82-0-0)	Spring Preplnt N (82-0-0)	Sidedress N (28% UAN)	Total N* (lbs/acre)	Average Yield (bu/acre)	Marginal** Return <u>(\$/acre)</u>
2	0	170	0	175	195	411.75
2	0	170	40	215	194	399.78
2	180	0	0	185	183	376.10
2	180	0	40	225	186	373.58

^{* 5} lbs N credited from starter

^{**} Corn price = \$2.25; N = \$.15/lb (82-0-0), \$.21/lb (28% UAN); Sidedress N application at cultivation = \$2/acre. Plano silt loam = 2.9% OM

Optimum N rates and corn yields at six locations on sandy loam soils, Waupaca & Portage Cos. 1998-99

Year	Recom.	EONR	Yield @ ONR	
	lb N	lb N/acre		
1998 (I)	200	142	192	
1998 (I)	200	200	208	
1998	120	137	178	
1999	120	86	168	
1999	120	141	166	
1999	120	58	167	

All sites corn/corn; (I) = irrigated; N applied sidedress. Data from Bill Pearson

Corn yield response to N rate, Hancock, 2001. (EONR=economic optimum N rate)

Effect of N timing on the relationship between N rate and corn grain yield, Hancock 2002.

N Source/timing and N rate effects on corn grain yield at Hancock, WI, 2003

		N rate, lb/acre				
N source	N timing	100	150	200	250	Mean
			grain	yield, b	u/acre	
PCU	PP	203	199	208	219	208
	PP + 4 wk	183	203	206	198	198
Am. Sulfate	4 wk & 8 wk	175	184	204	189	188
	Mean	187b	195ab	206a	202a	

No N control = 107 bu/acre

EONR = 188 lb N/acre, Yield @ EONR = 206 bu/acre

Recommended Timing of Nitrogen Applications for Corn

Soil	Fall	Preplant	Sidedress
Medium/Fine Texture Well-Drained	OK*	Optimum	OK
Medium/Fine Texture Poorly Drained	No	OK	Optimum
Coarse texture	No	No	Optimum

^{*}Includes use of BMPs for fall-applied N.

Minnesota on-farm N response trials

- N rates (7) 0-180 lb N/acre
- Small plot trials (14) 1989-1999
 - Corn after soybean
 - SE & SC Minnesota
- Field-size strip studies (15) 1997-2001
 - Corn after soybean
 - SC Minnesota

Randall et al., 2003

EONR from 13 small-plot and 13 field-size studies.

Optimum fertilizer N rates using the LSD (0.10) and QRP statistical models for 13 small-plot sites.

Optimum fertilizer N rates using the LSD (0.10) and QRP statistical models for field-size sites.

Summary

- On farm N response trials in Wisconsin support current N recommendations
- Response data indicate recommended rates are usually higher than observed optimum
- Similar findings in IA and MN

