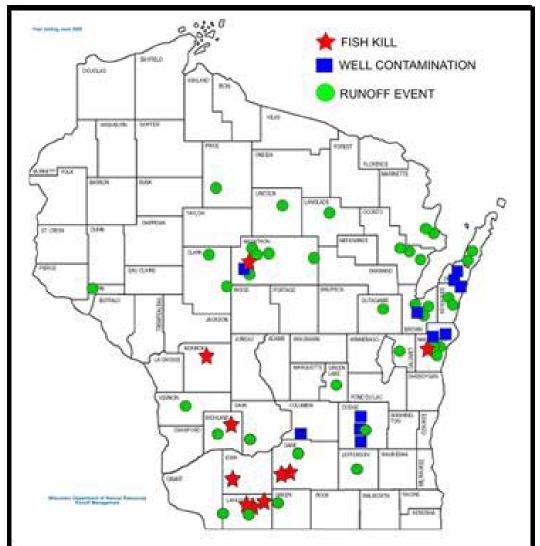
Reducing the Risk of Nutrient Loss in Surface Water Runoff

-Frozen and Snow Cover Soils-

Paul T. Kivlin
UW - Extension
UW - NPM / Discovery Farms Program

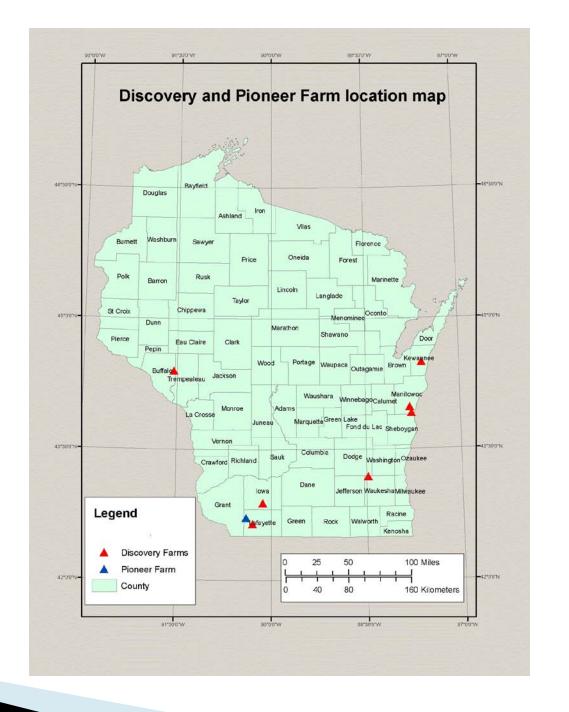


Negative impacts of improper manure applications and runoff

- Environmental Impacts
 - Eutrophication of water bodies
 - Hypoxia
 - Worse!!
- Human Health Concerns
 - Contaminated Drinking Water (surface and ground water)
 - Beach Closures
- Ag's Public Relations!

UW - Discovery Farms Program

- Privately owned farms
- Variety of management styles
- Multiple agricultural landscape setting
- "Real-world" situations
- ▶ USGS Monitoring from 2003 2008


Monitoring Locations

Discovery Farms

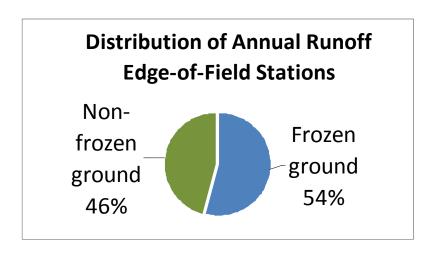
- 21 Water-Quality Monitoring Stations (6-640 acres) (7 farms)
 - ▶12 edge-of-field
 - ≥5 subsurface tile
 - >4 stream
- 5 Meteorological Stations

Pioneer Farm

- 15 Water-Quality Monitoring Stations (0.25-~1900 acres)
 - ≥13 edge-of-field
 - 2 stream

• 1 Meteorological Station

Data Collection



Data Collection

- Data was collected at individual stations during each year – termed "farm years" (10/1-9/30)
- Summarizes the precipitation-runoff relations and water-quality characteristics for each farm year
- Data split into frozen-ground and non-frozen ground runoff periods to describe typical fieldscale losses in temperate climate regions like Wisconsin

Is Wintertime Monitoring Important?

- Across all farms
- Comprised over ½ of annual runoff
- Up to 100% of runoff in any given year

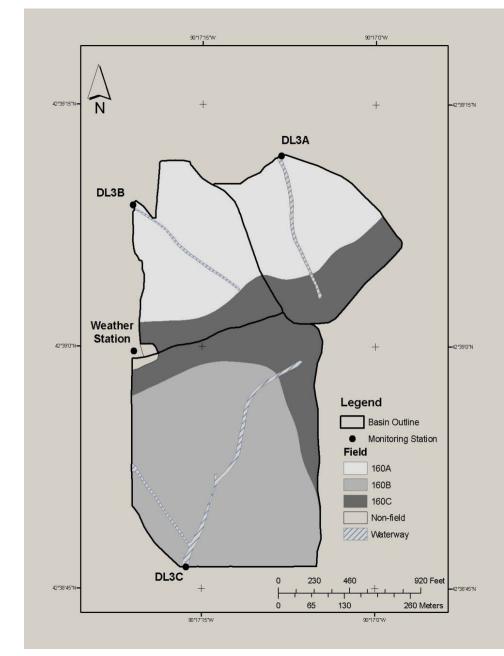
Why hasn't this been done much before?

Winter in Wisconsin!

- Biggest challenges are from ice and snow
 - Backwater from snow/ice
 - Daytime runoff / nighttime freezing
 - Frozen equipment lines, flumes
 - Site Access

Typical Winter Scenario

- Warm temperatures or rain are predicted
- 2. Site visits to clear ice and snow
- 3. Snowmelt starts
- 4. Temperatures drop below freezing at night
- 5. Start the whole process again!



Site Location

- Located on privately owned "no-till" farm in Southwest, WI
- Monitoring three small (16.9–39.5 acre) adjacent basins
- Slopes are 8-10 %
- Equipment located in grassed waterways at field edges
- Monitored annual losses but will only talk about the frozen ground period (FGP), typically November - March
- Variations in manure types, rates, and timing of application

Manure Applications

• **FGP04**

 Liquid dairy manure (LDM) application shortly preceding runoff (~4300gal/acre) in DL3A and DL3B. LDM (5400 gal) on DL3C in November

• FGP05

 Solid beef manure (SBM) applications shortly preceding runoff and on top of melting snow (average 5.3T/acre) in DL3C

• **FGP06**

no manure application

FGP07

 small SBM application shortly preceding runoff (13T/acre) in parts of DL3A and DL3B

Surface Water Runoff Results

Total runoff depth and mean flow-weighted concentrations of sediment, total nitrogen, and total phosphorus								
•	during frozen-ground periods at a no-till Discovery Farm in Southwest, WI , 2004 - 2007.							
Basin	Residue		Sediment	Total N	Total P			
- Name	Type	(in)		mg L ⁻¹				
Frozen Ground 2004 (n=5 (runoff), n=4 (constituents))								
DL3A	Corn/Corn	0.74a	26.6a	46.6b	14.6b			
DL3B	Corn/Corn	0.97a	61.0b	22.8b	9.0b			
DL3C	Corn/Soybean-Corn*	0.68a	6.7a	3.9a	2.3a			
	ınd 2005 (n=22 (runoff), n=9 (c							
DL3A	Corn/Soybean	4.38a	14.1a	3.1a	1.8a			
DL3B	Corn/Soybean	3.79a	17.9a	3.1a	1.9a			
DL3C	Soybean-Corn*/Corn-Soybean*	2.75a	45.1a	11.5b	5.8b			
	Frozen Ground 2006**		_					
DL3A	Soybean/Corn	0.54	61.0	8.0	7.7			
DL3B	Soyben/Corn	_			_			
DL3C	Corn-Soybean*/Corn	0.14 205.0		11.0	5.6			
	und 2007 (n=6 (runoff), n=3 (co							
DL3A	Corn/Corn	0.28a	24.7a	4.0a	3.1a			
DL3B	Corn/Corn	0.67a	32.4a	7.8a	6.7a			
DL3C	Corn/Soybean-Corn*	1.06a	248.1b	5.7a	3.6a			
* First residue type listed comprises 8	80% of the basin area, second lis	ted compi	rises 20%					
** Statistics not computed								
Values within a column and year follo				_	50;			
letters correspond to nonparametric a	nalysis based on data ranks rath	er than m	ean as sho	wn.				

Surface Water Runoff

- Runoff depths were not different between the basins in any given year
- Neither the type of manure nor the timing or rates of application affected runoff volumes
- > The frozen ground period of runoff is a substantial component of the annual runoff observed from this setting

Critical Runoff Periods

- 4 years of data
 (2004 -2007)
 averaged for three sites on one farm
- No-till operation
- Periods which are "best" for producers to apply manure coincide with the periods which are higher risk for runoff!

January 8%	February 52%	March 26%
April	May 9%	June 3%
July 2%	August	September
October	November	December

Average percent of annual runoff

Residue

Type

Frozen Ground 2004 (n=5 (runoff), n=4 (constituents))

Corn/Corn

Corn/Corn

Corn/Soybean-Corn*

Frozen Ground 2005 (n=22 (runoff), n=9 (constituents))

Corn/Soybean

Corn/Soybean

Soybean-Corn*/Corn-Soybean*

Frozen Ground 2006**

Soybean/Corn

Soyben/Corn

Corn-Soybean*/Corn

Frozen Ground 2007 (n=6 (runoff), n=3 (constituents))

Corn/Corn

Corn/Corn

Corn/Soybean-Corn*

Values within a column and year followed by the same letter are not significantly different at m p=0.050;

* First residue type listed comprises 80% of the basin area, second listed comprises 20%

letters correspond to nonparametric analysis based on data ranks rather than mean as shown.

total phosphorus

Sediment Total N Total P

mg L⁻¹

46.6h

22.8b

3.9a

3.1a

3.1a

11.5b

8.0

11.0

4.0a

7.8a

5.7a

14.6b

9.0b

2.3a

1.8a

1.9a

5.8b

7.7

5.6

3.1a

6.7a

3.6a

26.6a

61.0b

6.7a

14.1a

17.9a

45.1a

61.0

205.0

24.7a

32.4a

248.1b

Runoff

(in)

0.74a

0.97a

0.68a

4.38a

3.79a

2.75a

0.54

0.14

D 28a

0.67a

1.06a

	lotai	Witro	ogen	Kesui	US
Total runoff depth	and mean flow-wei	ghted concent	trations of sedir	ment, total nitrog	en, and

	lotai	Nitr	ogen	Kesul	ts
Total runoff denth and	d mean flowewe	ighted concer	ntrations of sed	iment total nitrod	en and

during frozen-ground periods at a no-till Discovery Farm in Southwest, WI, 2004 - 2007.

Basin

Name

DI 3A

DL3B

DL3C

DL3A

DL3B

DL3C

DL3A

DL3B

DL3C

DL3A

DL3B

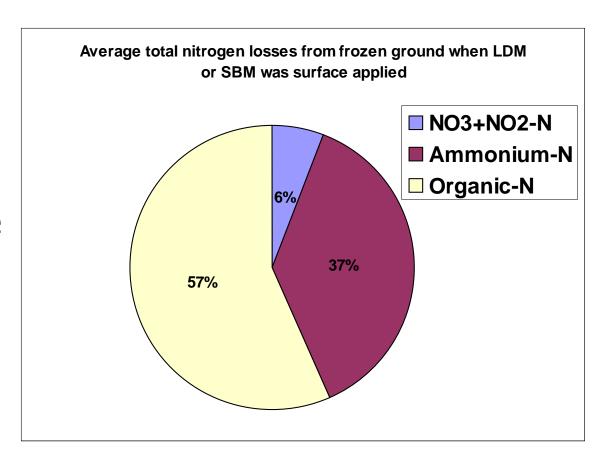
DL3C

** Statistics not computed

		To	tal	N	itro	gen	Res	sul	ts
_	 		_						

	ı	ota	I NITT	og	en i	Results	5
-					1-		

Nitrogen


- Both LDM and SBM <u>increased</u>
 TN event-mean concentrations and losses
- TN concentrations were the highest when LDM was applied shortly preceding snowmelt (highest event-mean concentration was 46.6 mg/L)
- Concentrations of ammonium-N were seen up to 43.6 mg/L from basins receiving LDM shortly preceding runoff
- Lower concentrations and losses were observed when manures were applied in the fall and early winter

Total Nitrogen Forms

- Organic-N made up the majority of the TN measured in surface water runoff when LDM or SBM was surface applied
- Ammonium-N is typically used as an indicator of manure affected runoff water

Residue

Type

Frozen Ground 2004 (n=5 (runoff), n=4 (constituents))

Corn/Corn

Corn/Corn

Corn/Soybean-Corn*

Frozen Ground 2005 (n=22 (runoff), n=9 (constituents))

Corn/Soybean

Corn/Soybean

Soybean-Corn*/Corn-Soybean*

Frozen Ground 2006**

Soybean/Corn

Soyben/Corn

Corn-Soybean*/Corn

Frozen Ground 2007 (n=6 (runoff), n=3 (constituents))

Corn/Corn

Corn/Corn

Corn/Soybean-Corn*

Values within a column and year followed by the same letter are not significantly different at p=0.050;

* First residue type listed comprises 80% of the basin area, second listed comprises 20%

letters correspond to nonparametric analysis based on data ranks rather than mean as shown.

Sediment Total N Total P

26.6a

61.0b

6.7a

14.1a

17.9a

45.1a

61.0

205.0

24.7a

32.4a

248.1b

<u>m</u>g L¹

46.6b

22.8b

3.9a

3.1a

3.1a

11.5b

8.0

11.0

4.0a

7.8a

5.7a

14.6b

9.0b

2.3a

1.8a

1.9a

5.8b

7.7

5.6

3.1a

6.7a

3.6a

Runoff

íin).

0.74a

0.97a

0.68a

4.38a

3.79a

2.75a

0.54

0.14

0.28a

0.67a

1 ПБа

Total	Phos	phor	us R	esu	lts
enth and mean flo	www.eiabted.conc	entrations of	sediment tot	al nitrogen	and tota

	otai	Phos	phorus	s Kesu	Its
Total runoff depth	and mean flow	-weighted conce	entrations of sedim	nent, total nitrogen,	, and total phosphorus

lotal	Phosp	horus i	Results
-------	-------	---------	---------

during frozen-ground periods at a no-till Discovery Farm in Southwest, WI, 2004 - 2007.

Basin

Name

DL3A

DL3B

DL3C

DL3A

DL3B

DL3C

DL3A

DL3B

DL3C

DL3A

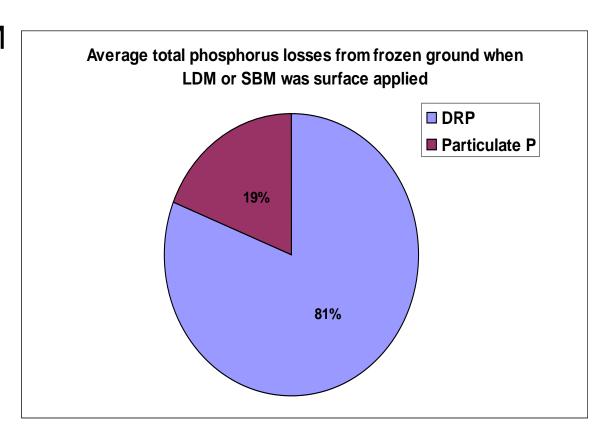
DL3B

DIBO

** Statistics not computed

Phosphorus

- TP was increased with either LDM or SBM was applied within one week preceding runoff
- TP concentrations and losses were highest when LDM was applied (highest event-mean concentration was 14.6 mg/L)
- Lower concentrations and losses were observed when manures were applied in the fall and early winter



Total Phosphorus Forms

- Of the Total P measured when LDM or SBM was surface applied the majority is in the dissolved form
- Particulate phosphorus is typically associated with sediment particles but has also shown up with application of manure

Why Spread Manure in the Winter?

January	February	March Haul manure, tillage, fertilize,
April	May	June
Haul, till, fertilize, plant, spray	Haul, till, fertilize, plant, spray	No open fields, hay harvest, spraying
July	August	September
No open fields, hay harvest, spraying	No open fields, hay harvest, small grains	Hay harvest, corn silage,
October	November	December
Corn/Beans	Corn/Beans	Corn/Beans
Manure, till	Manure, till	Manure, till

Why apply manure during the frozen ground period?

- Animal Health
- Large window for application
 - Open fields
 - Time
 - Frozen soils
- LIMITED CHOICE!
 - Storage
 - Equipment
 - Investment

Manure applications on frozen/snow-covered ground: What the data show

- Runoff is more likely in February and March than in early winter.
- Wintertime runoff can comprise a significant amount of annual surface-water runoff and nutrient losses.
- The shorter the time between a manure application and a runoff event, the greater potential for nutrient losses.

Why not ban winter spreading?

- Having all livestock farms apply manure in a narrow window greatly increases the risk
- Spreading entire field verses portions of a field can increase risk
- Storage does not reduce the risk of a runoff event – management reduces risk
- Work with producers to limit spreading in high risk periods, offer options to storage
 Stacking; spreading fields with limited risk; etc

Conclusions

- Surface water runoff was not significantly affected by the surface application of manure, suspected that the low rates of the application may influence this
- Both LDM and SBM significantly increased the losses of TN and TP when applied within one week of runoff
- Nutrient losses were less when manures were applied in the fall or early winter

Needed research:

- Impacts of manure applications to frozen/snow-covered ground in early winter compared to late winter.
- Distance/rate/manure type impacts.
- Are "low" recommended rates really ok?
- Wintertime runoff "forecasting"
- Impact via subsurface Tiles

Any Questions?

