

Larry Bundy, Sue Porter, and Laura Ward Good
Dept. of Soil Science, UW-Madison & WDATCP

SNAP-Plus

 Nutrient management planning software program

Phosphorus Index

 Nutrient management planning tool that assesses the risk of phosphorus delivery to surface water from agricultural fields

SNAP-Plus software uses "routine" information:

- Soil test
- Crop and tillage
- Slope and slope length

SNAP-Plus

Provides field-by-field:

- Multi-year nutrient management plan
- Rotational soil loss assessment
- P Index calculation
- P balance calculation
- Record-keeping

Nutrient Management Standard 590:

All fields that receive crop nutrients must be farmed to T (according to farm conservation plan).

SNAP-Plus currently provides a RUSLE2 rotational soil loss <u>assessment</u> (may be 10-20% higher than if done with full RUSLE2).

Nutrient Management Standard 590:

Available nitrogen applications can not exceed crop N requirements or N removal for legumes

SNAP-Plus calculates N recommendations and N credits

Nitrogen Uptake for First Year Legumes and Companion Crops

Crop	Yields	N Uptake	
	per acre	lb/acre	
Legume hay	2-3 T	220	
Legume hay with oatlage	1 st cut: 1-2 T 2 nd cut: 1-2 T	240	
Soybean	50 bu	180	

Nutrient Management Standard 590:

Phosphorus applications must be planned using soil test P thresholds or the P Index.

Soil test P thresholds -

- > 50 ppm limit P applications to crop removal
- > 100 ppm eliminate P applications if possible; cumulative P applications must be 25% less than crop removal (over 4 years)

P Index -

Must be less than 6 averaged across the rotation.

SNAP-Plus calculates both the P balance and P Index for each field.

SNAP-Plus Test Version

Test version for 590 Standard is available on web:

www.soils.wisc.edu/Snap-Plus/590Test.html

Counties and Soils Selected for Snap-plus Planning Exercise

Assumptions of planning exercise using proposed standard:

- Soil test P = 105 ppm
- Slope is 8%, slope length is 150 feet
- Medium yield potential soils (except for Plainfield)

For planning exercise:

All operations must:

- Meet T
- Avoid over-applying N
- Maintain P Index less than 6 across rotation
- Apply 25% less P₂O₅ than crop removal

Cash Grain Operations

No Change!

Commercial fertilizers still applied according to UW recommended rates.

Dairy Operations

- CCAAA rotation
- With N credit for fair stand of alfalfa, no N needed for first year corn except for irrigated sands (NC farm).
- Liquid dairy manure applied to second year corn and seeding year alfalfa to maximum allowable N rate
- Manure = 9.3-5-16/1000 gal.
- Nitrogen limits manure applications

Dairy operations

			Rotational			
	Soil	Т	Soil loss	Crop P ₂ O ₅ uptake	P ₂ O ₅ balance	P Index
		T/a/year		lb/acre/yr		
NW	Boyer	3	2.8	265	-115	4.2
NC	Plainfield	5	0.2	305	-105	0.3
NE	Arland	4	0.7	265	-115	1.7
SE	Casco	3	2.8	285	-125	4.4
SW	Edmund	2	1.8	285	-125	4.7

Poultry Operations

- CCCS Rotation
- Nitrogen needed for all corn years
- N requirement for one year of corn adds about 75% of the crop P₂O₅ removal for the 4-year rotation
- Manure = 24-30-24/ton

Poultry operations

			Rotational			
	Soil	Т	Soil loss	Crop P ₂ O ₅ uptake	P ₂ O ₅ balance	P Index
		T/a/year		lb/acre/yr		
NW	Boyer	3	1.6	210	- 60	2.8
NC	Plainfield	5	0.3	260	- 65	0.4
NE	Arland	4	2.6	210	- 60	4.0
SE	Casco	3	2.4	225	- 60	3.9
SW	Edmund	2	0.6	225	- 60	2.7

Poultry operations

- Can use P Index strategy if need to apply more manure
 - At 105 ppm soil test P, all PI values less than 6.
- But this is only temporary solution, because if continue to raise soil test P, P Index value will go above 6.
 - At 300 ppm soil test P, only sites with very low erosion (NC, Plainfield and NE, Boyer) are less than 6.

Summary

- P index buys time to achieve P balance
- For dairy with CCAAA rotation, N determines manure rates
- High P in poultry manure requires large acreage or off-farm distribution

PI values vs. measured total P runoff losses from several sub-watersheds, Pioneer Farm, UW-Platteville

*** Provisional data and Site 2 – 2004 removed

More Research Base for P Index

- Year-round runoff monitoring in field-scale watersheds with different soils and management (23 sites)
- 2005: Simulated rainfall runoff experiments in North Central Wisconsin (Marshfield).

Research Base for P Index

- Analysis of soils from throughout Wisconsin for relationships between soil test P, water-soluble P, soil total P, soil properties, and soil P stratification (106 profiles).
- Simulated rainfall runoff trials with different managements and soils (335 plot events).
- Small plot replicated long-term natural runoff collectors with different managements and soils (72 plots)

