

Dick Wolkowski

Department of Soil Science

University of Wisconsin

WHAT IS SOIL QUALITY

DEPENDS ON WHO YOU ARE:

- Farmer: Highly productive, sustainable media for growing crops
- Naturalist: Soil in ecological balance with the landscape and environment
- Homeowner: Substance that offers building foundation, waste disposal, gardening opportunities

MANY FACTORS AFFECT SOIL QUALITY

- > Inherent properties
 - Texture
 - Organic matter
 - Aggregation
 - Water holding capacity
 - Drainage
 - Bulk density
 - Topography
 - Climate

- Management
 - Tillage intensity
 - Compaction
 - Organic additions
 - Soil test and pH
 - "Artificial" drainage
 - Residue management
 - Microbial activity
 - Salts

- Organic matter
- Residue decomposition
- Soil structure
- Nutrient cycling
- 1 g of soil has 100,000,000 bacteria

AGGREGATE STABILITY IS A COMMON MEASURE OF SOIL QUALITY

> INFLUENCED BY

- Organic matter and organisms
- Texture
- Rotation
- Tillage
- > IMPORTANT FOR:
 - Aeration
 - Water relations
 - Productivity (Tilth)

TILLAGE AFFECTS SOIL PROPERTIES RELATED TO SOIL QUALITY

- Crop residue cover
- > Soil test measurements
- Nutrient availability
- Structure and aggregate stability
- Water relationships
- > Temperature
- Soil biology
- Compaction

SURFACE CROP RESIDUE INTERACTS WITH OTHER FACTORS

- > Erosion
- > Soil temperature
- > Conserves moisture
- Soil physical properties
- Carbon and nutrient cycling

TILLAGE EFFECTS ON SOIL STRENGTH

- Reduced tillage soils have higher surface bulk density
- Short-term response to occasional tillage
- Traffic management critical
- Subsoiling response is likely site dependent

Effect of periodic plowing On soil bulk density (0-3 in.) Pierce et al., 1994

COMPACTION AFFECTS SOIL QUALITY

Compaction affects the soil

- structure
- porosity
- aeration
- strength

Plant growth affected

- root growth
- nutrient uptake
- water utilization

SOIL FERTILITY LINKED TO ATTEMPTS TO IMPROVE SOIL QUALITY

N AVAILABILITY IS DECREASED IN REDUCED TILLAGE:

- > Lower and slower mineralization
- Greater immobilization
- Volatilization of ammonia from surface urea and urea-containing materials
- > Potential for increased denitrification
- Higher supplemental N rate for >50% corn residue recommended (30 lb N/a)

TEN FACTORS FARMERS CONSIDER IMPORTANT MEASURES OF SOIL QUALITY

- 1. Organic matter
- 2. Crop appearance
- 3. Earthworms
- 4. Erosion
- 5. Tillage ease

- 6. Drainage
- 7. Soil structure
- 8. Soil pH
- 9. Soil test P and K
- 10. Yield

ASSESSING SOIL QUALITY

> OFTEN SUBJECTIVE:

- Soil Health?
- Smell, feel, look, taste?
- Soil Quality Index

MORE QUANTITATIVE

- Chemical
 - pH, O.M., nutrients
- Physical
 - Structure, bulk density
- Biological
 - Respiration, microbial biomass
- Integrate factors into an index

Pennsylvania

Field ID _____

Date	-		
II 2 50 To	6.5		

Indicator		Descriptions			√ Rating		Comments
	Good (8-10)	Medium (4-7)	Poor (1-3)	Good	Med	Poor	
Soil Tilth	Mellow; Pliable; Crumbly;	Firm; Some large clods;	Hard dense chunks; Tight; No				
⊕, >	Clods easily broken apart by tillage	Clods can be broken apart by tillage	structure; Difficult to break apart by tillage				
Compaction	Little resistance to penetration by	Some resistance to penetration by	High resistance to penetration by				
⊕, >	soil probe, shovel, wire flag., tillage	soil probe, shovel, wire flag, tillage	soil probe, shovel, wire flag, tillage			ll	
	implement, etc.; No hard pan	implement, etc.	implement, etc.; Hard pan present				
Water	Soil drains well after rain; Little or	Water drains slowly with some	Water ponds or runs off following				
nfiltration	no ponding or runoff following rain;	ponding	most rains; Long wait to get on the			ll	
and	Can get into the field soon after a		field following rain; soil surface			ll	
Drainage 🌢	rain		crusted				
Erosion	No gullies or visual evidence of	Some visual signs of erosion;	Obvious signs of erosion; Muddy				
⊕, ♦	erosion; any runoff that occurs is	Cloudy runoff	runoff; Shallow topsoil; Subsoil			ll	
	generally clear; Deep topsoil		showing at the surface				
Surface	Soil surface covered year round;	Some residue or vegetation present	Little or no soil cover; Bare soil for				
Cover	Little bare soil; Dense sod or other	but soil surface not completely	much of the year			ll	
0	vegetation; Heavy, well distributed	covered. Bare soil during part of the				ll	
	residue present	year					
Soil Life	Signs of earthworms and other soil	Occasional signs of earthworms and	No visible signs of earthworms and				
ŵ	life common. (worms, worm casts,	other soil life. (worms, worm casts,	other soil life. (worms, worm casts,			ll	
	worm holes, etc)	worm holes, etc)	worm holes, etc)				
Soil Organic	Dark color; visible organic material;	Medium organic matter soil test	Light color; No visible organic				
Matter	Earthy smell; high organic matter		material in soil; No smell; Low			ll	
>	soil test		organic matter soil test				
Plant	Healthy uniform plant growth;	Plant health varies; Inconsistent	Spotty, uneven crops; Plants				
Growth	Consistent good yields; Crops resist	yields; Crops somewhat resistant to	unhealthy; Consistently poor yield;			ll	
®	stress, such as drought	stress	Crops susceptible to stress				
Plant Roots	Robust, large, deep, well dispersed	Roots present in profile; Some	Few or no roots present; Roots				
®:	root system; No obvious restriction	misshapen roots; Some restriction to	short, coarse, not uniformly				
	to root growth; Many fine roots	root growth	distributed; Roots growing				
			sideways; Obvious restrictions				
Other							
			1				
			l			ı I	

A SOIL MANAGEMENT ASSESSMENT FRAMEWORK

(Andrews et al., 2004)

> THREE STEP PROCESS

- Indicator selection
- Indicator interpretation
- Integrate into a SQ Index

> SPECIFICATIONS

- Indicators must relate to soil function and be sensitive to management
- Must be applicable over a range of soils and climate
- Represent soil chemical, physical and biological properties
- Can be applied to a number of land uses

Whistling Straits – 9th Green

INDICATOR SELECTION DEPENDS ON MANAGEMENT GOAL

(Select four to eight)

AGRICULTURAL	L MANAGEMENT	GOAL

Crop Production	Waste Recycling	Environmental Protection		
Soil pH	Soil organic C	Slope		
Crop residue	Drainage	Soil Test P		
Tillage intensity	Microbial activity	Soil metal content		
Soil test P and K	Texture	Texture		
Water availability	Depth to restriction	Drainage		
Bulk density	Aggregate stability	Landscape position		

INDICATOR SCORING MODELS

- Indicator score from research based algorithms
- Relatively similar over soils and climates
- Soil Quality Index

 $SQI = \frac{Sum Scores}{n} \times 10$

Andrews et al., 2004

EXAMPLE SOIL MANAGEMENT ASSESSMENT FOR SELECTED CASE STUDIES

Effect of tillage management in two lowa watersheds

Effect of tillage management in SE USA

SOIL QUALITY CONCEPTS ARE BEING INTEGRATED INTO CONSERVATION PLANNING BY NRCS

- Soil Conditioning Index (SCI)
 - Model that predicts the impact of adjusting rotation, tillage, and other management on soil organic matter
 - Assumes SOM is a major indicator of soil quality
 - Impacts erosion and is related to C sequestration
 - Calculated within RUSLE2
 - Scaled from -2 to +2
 - Goal is to plan to increase SCI

CONSERVATION PLANNING IS CHANGING

- Going are the days of measuring residue
- Soil Tillage Intensity Rating (STIR)
 - Reflects the impact of tillage type, operation speed, traffic management, depth, rotation, percent of surface disturbed
 - Calculated within RUSLE2
 - Lower STIR values = reduced soil erosion
 - Values range between 0 and 200
 - Typical no-till at 30 or less
 - Some "imbedded" credit for energy savings

CSP PROGRAM USES SCI AND STIR

Examples

- \$1.16/a increase in cost-share for every 0.1 increase in the SCI in selected Wis. watersheds
- 2006 Lake Dubay (NC Wis.) Grant/Maquoketa (SW Wis.)
- 2005 Duck Creek/Pensaukee (NE Wis.) Crawfish (SE Wis.) Kishwaukee (Mostly in Illinois)
- > 2004 Lower Chippewa (WC Wis.)

Other states

Up to \$2.00/a in Colorado for low STIR values, double if using auto-steering

SOIL QUALITY PARAMETERS AND YIELD, GREEN LAKE COUNTY, WIS., 2005

Soil map for field

Aerial view of field Sep. 2005

SOIL QUALITY PARAMETERS AND YIELD, GREEN LAKE COUNTY, WIS., 2005

Green = > 160 Light Blue = 150-160 Darker Blue = 120-140 Pink = 100-120 Red = 80-100 Yellow = less than 80

SUMMARY

- Soil quality is a reflection of inherent soil properties and management
- Agricultural practices such as tillage, vehicle traffic, manure application, crop rotation affect soil quality
- The assessment of soil quality can be subjective, but quantitative methods are available
- Future government programs recognize soil quality and will pay based on enhancement
- Improve traffic and tillage management and manage SOM to enhance soil quality