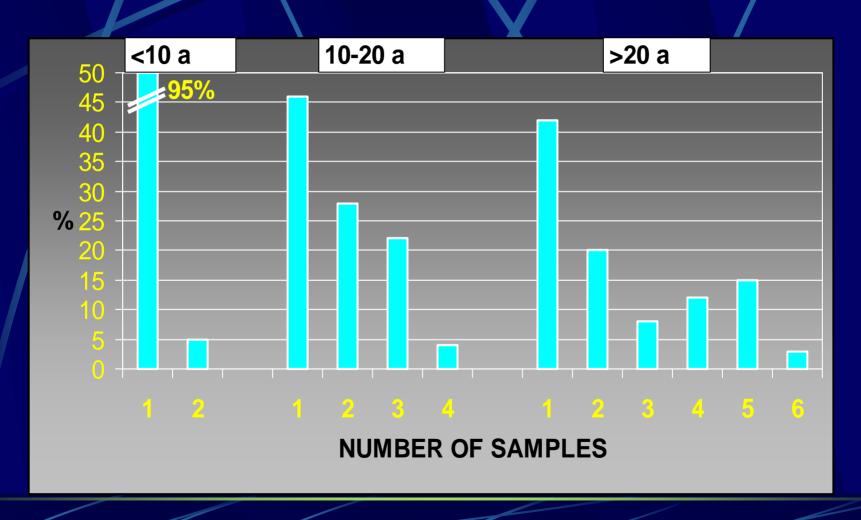


Dick Wolkowski

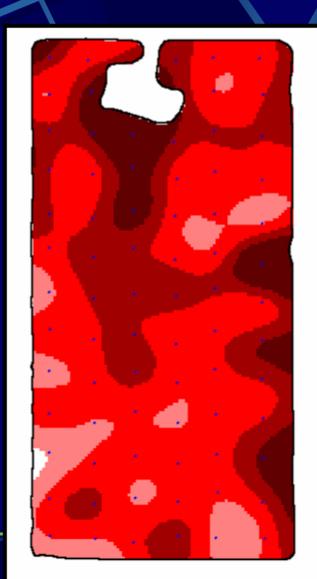

Extension Soil Scientist

UW-Madison

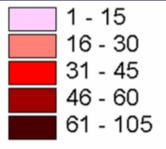
The Purpose of Soil Sampling

- Determine the nutrient and lime need of fields to optimize profitability and preserve environmental quality
- Identify the "central tendency" of nutrient levels OR assess and manage spatial variability of soil test in fields
- Monitor effects of nutrient application over time
- The only preplant nutrient diagnostic tool
- Increasingly becoming a regulatory index

1999 SPAL Survey – 912 Reports (Kelling And Peters)



Describing Soil Test Variability


VARIABILITY CLASS	DISTANCE	SOURCE
MICRO	< 2"	PEDS vs. PORES
		MICRO MORPH.
MESO	2" - 6 '	FERT. BANDING
		CROP ROWS
MACRO	> 6 '	LANDSCAPE
		FIELD MGT.

Have We Paid Too Much Attention to X and Y, But Not Z

Soil test P distribution in a Rock Co. field

SOIL TEST P

Current Sample Depth Recommendations

- Moldboard plowing
 - Depth of tillage
- Chisel plowing or offset disking
 - ¾ depth of tillage
- No-till
 - 6-7 in.
 - 0-2 in. sample for pH in long-term no-till
- Influence of soil moisture condition and consistency between samplers ??

King Kong vs. Mickey

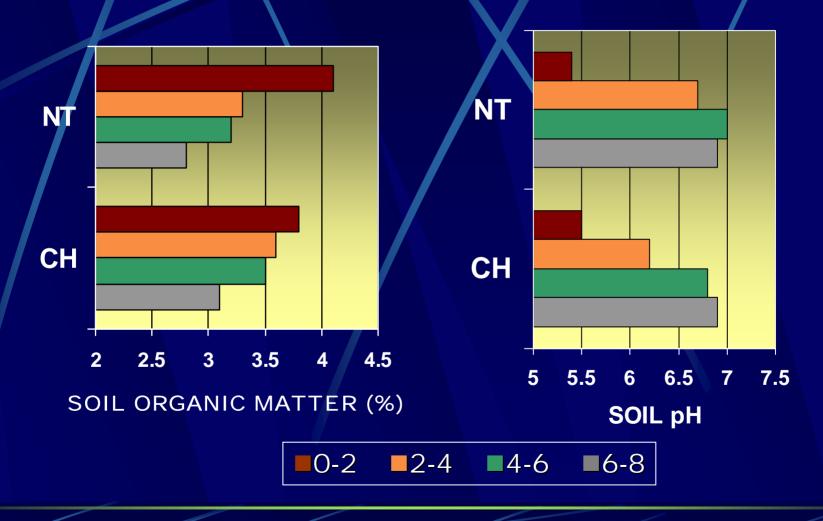
It wouldn't be a fair fight, so could we expect them to take samples similarly

Incremental Soil Sampling Comparisons

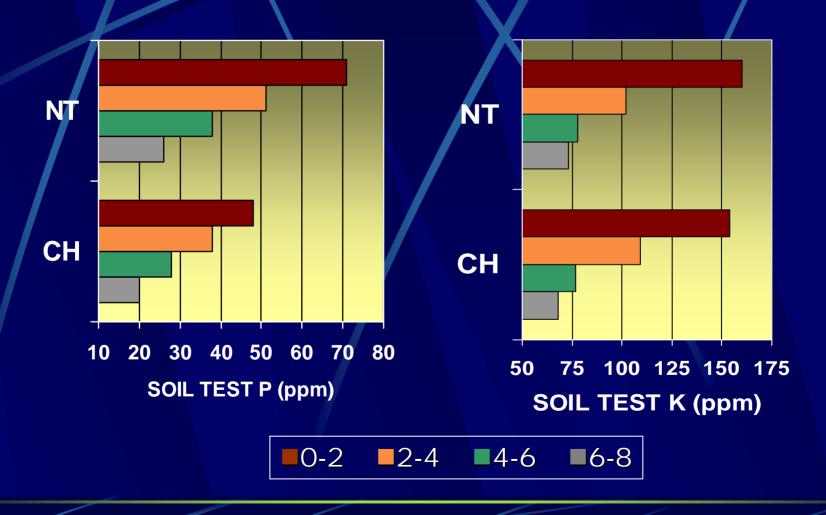
- Arlington tillage x rotation x fertilizer placement study. Started in 1997.
 - Chisel, strip-till, no-till
 - Continuous corn, corn/soybean
 - w/ or w/o broadcast (200 lb 9-23-30)
- 9 cores to 8 inches in 2 inch increments over four replications in 2005
- Examine effects of 4, 6, 8 in. sample depth
- Plano silt loam (subsoil group B)

Incremental Soil Sampling Comparisons

- Lancaster tillage x fertilizer placement study. No-till for 10+ years, 2 chisel, 1 moldboard.
 - Corn/soybean
 - Sampled the unfertilized plots
- 9 cores to 8 inches in 2 inch increments in single rep
- Rozetta silt loam (subsoil group A)


Incremental Soil Sampling Comparisons

- Arlington tillage x herbicide study.
 No-till, chisel, moldboard for 20+ years.
 - Continuous corn
 - Recommended NPK fertilization, no lime
- Arlington production alfalfa field
 - NT Corn in 2003, seeded in 2004, two hay years
 - Light manure application
 - Previous chisel tillage history
- Both Plano silt loam (subsoil group B)


Tillage and Soil Test Stratification

- Acidification due to nitrification of surfaceapplied ammonium containing fertilizer; OM accumulation in no-till
 - Would lead to higher lime rec. in surface
 - Possible consequences on herbicide activity and nutrient availability
- P and K stratification
 - Surface application with little or no incorporation
 - Leaching from crop residue
 - Incomplete mixing by conservation tillage

Soil Test Stratification as Affected by Tillage Management, Arlington, Wis., 2005

Soil Test Stratification as Affected by Tillage Management, Arlington, Wis., 2005

Effect of Sampling Depth on Soil pH and Organic Matter

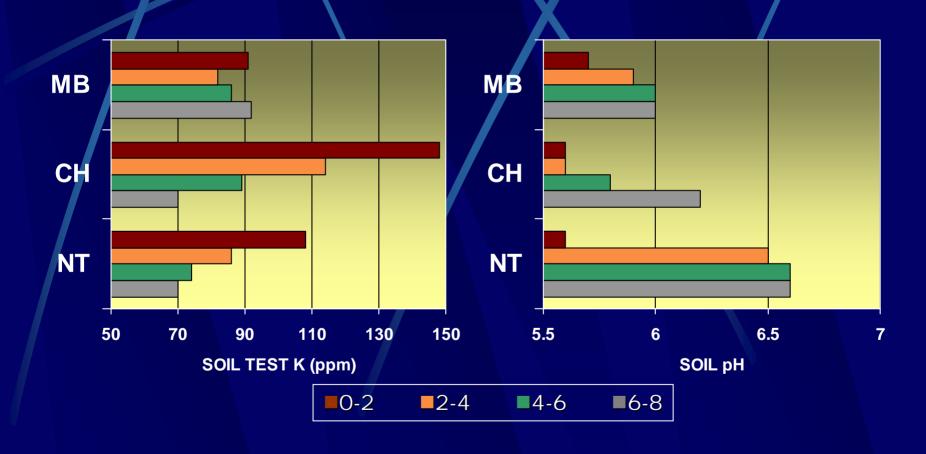
		SOIL	TEST	
Depth	Depth pH OM (%		(%)	
in	CH	NT	CH	NT
0-4	5.9	6.1	3.7	3.7
0-6	6.2	6.4	3.6	3.5
0-8	6.4	6.5	3.5	3.3

Effect of Sampling Depth on the Estimated Lime Requirement

	LIME REQUIREMENT t/a 60-69 (target pH = 6.8)							
Depth	Chisel	No-Till						
0-4	5.3	4.1						
0-6	3.4	2.3						
0-8	2.2	1.7						

Effect of Sampling Depth on Soil Test P and K

Depth	Soil T	est P	Soil T	est K		
		ppm				
in	CH	N7	CH	NT		
0-4	43 EH	61 EH	132 H	131 H		
0-6	36 EH	53 EH	113 H	113 H		
0-8	32 EH	47 EH	102 O	103 O		


Effect of Sampling Depth on P and K Recommendations for Corn

Depth	Soil T	est P	Soil T	est K				
		ppm						
in	CH \	NT	СН	NT				
0-4	0	0	25	25				
0-6	0	0	25	25				
0-8	0	0	55	55				

Effect of Sampling Depth on P and K Recommendations for Alfalfa

Depth	Soil T	est P	Soil Test K		
		pp	m		
in	CH \	NT	CH	NT	
0-4	0	0	150	150	
0-6	0	0	300	300	
0-8	0	0	300	300	

Soil Test Stratification Following 20 Years Of Tillage Management, Arlington, Wis., 2006

Effect of Sampling Depth Soil pH

Depth		Soil pH			
in	MB	CH	NT		
0-4	5.8	5.6	6.1		
0-6	5.9	5.7	6.2		
0-8	5.9	5.8	6.3		

Effect of Sampling Depth the Lime Recommendation for Corn and Alfalfa

	Corn				Alfalfa	
Tillage	Samp	ling dep	oth (in)	Sampl	ing dep	oth (in)
	0-4	0-6	0-8	0-4	0-6	0-8
			ton 60	0-69/a	<u> </u>	
MB	1.2	0.4	0.6	5.9	5.3	5.5
СН	2.7	2.0	1.2	8.1	7.2	6.2
NT	0	0	0	4.7	3.7	3.0

Effect of Sampling Depth Soil Test K

Depth		Soil Test K				
in	MB	CH	NT			
		ppm				
0-4	87 L	131 H	97 O			
0-6	87 L	117 H	89 L			
0-8	88 L	105 O	85 L			

Effect of Sampling Depth the Potash Recommendation for Corn and Alfalfa

	Corn				Alfalfa	
Tillage	Samp	ling de	pth (in)	Sampl	ling dep	oth (in)
	0-4	0-4 0-6 0-8			0-6	0-8
		lb K				
MB	80	80	80	330	330	330
СН	20	20	20	150	150	300
NT	50	80	80	300	330	330

Effect of Sampling Depth Soil Test K in a Production Alfalfa Field

Depth Increment	Soil Test (ppm)		Sample Depth	Soil (pp	Test m)
in	P	K	in	P /	K
0-2	20	265	0-4	16	208
2-4	12	150	0-6	14	171
4-6	11	99	0-8	14	151
6-8	11	90			•

Summary

- Farmer profitability and regulatory compliance depends on proper soil sampling and testing
- Maintain management of surface variability, but attention must also be paid to depth variability
- Stratification and how it effects fertilizer or lime recommendations emphasizes the need to sample to proper depth
 - Too shallow = excessive recommendation
 - Too deep = inadequate recommendation
- Chisel tillage does not remove stratification
- Best advice is to sample to depth of the dominant tillage and maintain consistency