Basic Concepts of Soil Fertility

Carrie Laboski

UW-Madison Department of Soil Science

Basic Concepts of Soil Fertility:

1. 17 essential elements

- function
- form taken up
- mobility in plant

2. Nutrient uptake

- mechanisms
- effect of soil characteristics

3. Cation exchange

- factors affecting
- relative magnitude

- Structural
 - -Carbon
 - -Hydrogen
 - -Oxygen

- Primary
 - -Nitrogen
 - -Phosphorus
 - -Potassium

- Secondary
 - -Calcium
 - -Magnesium
 - -Sulfur

Micronutrients

- -Iron
- Manganese
- Copper
- -Zinc
- -Boron
- Molybdenum
- Chlorine
- -Nickel

- Beneficial or Enhancing
 - -Sodium
 - -Silicon
 - -Cobalt
 - -Selenium
 - -Aluminum

Sources of nutrients to plants

1. Soil solution

- ionic form
- low concentration
- highly buffered

2. Contributors to the soil solution

- exchange sites on clay and organic matter
- organic matter and microorganisms
- soil rocks and minerals
- atmosphere and precipitation
- fertilizer and other additions

Movement of ions from soils to roots

Root interception

Mass flow

Diffusion

Mass flow – dissolved nutrients move to the root in soil water that is flowing towards the roots

Diffusion – nutrients move from higher concentration in the bulk soil solution to lower concentration at the root; -In the time it takes NO₃⁻ to diffuse 1 cm, K⁺ diffuses 0.2 cm, and H₂PO₄⁻ diffuses 0.02 cm

Root interception – roots obtain nutrients by physically contacting nutrients in soil solution or on soil surfaces;

- roots contact ~1% of soil volume;
- mycorrhizal infection of root increase root-soil contact

Principal ways in which ions move from soil to the roots of corn

Nutrient	Amount of Nutrient Required for 150 bu/a of Corn (lb/a)	Percentage Supplied by		
		Root Interception	Mass Flow	Diffusion
N	170	1	99	0
Р	35	3	6	94
K	175	2	20	78
Ca	35	171	429	0
Mg	40	38	250	0
S	20	5	95	0
Cu	0.1	10	400	0
Zn	0.3	33	33	33
В	0.2	10	350	0
Fe	1.9	11	53	37
Mn	0.3	33	133	0
Мо	0.01	10	200	0

Barber, *Soil Bionutrient Availability*, (1984). Diffusion estimated be difference between total nutrient need and nutrient supply by root interception & mass flow

Ion absorption by plants:

- 1. Passive uptake
 - diffusion
 - ion exchange

- 2. Active ion uptake
 - ion carriers
 - selective / competitive

Cation Exchange Capacity (CEC)

- Cations positively charged ions eg. K⁺
- CEC soil property
 - Ability of soil to hold cations
 - Nutrients or other chemicals (herbicides)

- Units are meq/100 g or cmol_c/kg
 - Number is the same regardless of units

Importance of CEC

- Nutrient retention
- Nutrient availability
- Act as buffer
- Control levels of waste disposal
- Control levels of herbicide

Soil properties that affect CEC

- Amount of clay
- Amount of organic matter
- pH
- Type of clay
- Estimated by summing exch. Ca + Mg + K

Est. CEC =
$$\frac{\text{ppm Ca}}{200} \times \frac{\text{ppm Mg}}{122} \times \frac{\text{ppm K}}{391} \times \frac{5 \text{ g}}{\text{wt. of soil}}$$

in 5 g scoop

CEC range for various soil textures

Texture	CEC (meq/100g)		
Sands (light colored)	3 - 5		
Sands (dark colored)	10 - 20		
Loams	10 - 15		
Silt loams	15 - 25		
Clays and clay loams	20 - 50		
Organic soils	50 - 100		

From Havlin et al., 2005

Determining nutrient need:

Visual symptoms

Plant analysis

• In-field plant tests

• In-field soil "quickkit" tests

Soil tests

Describe how the following soil characteristics affect nutrient availability:

- Texture
- Structure
- Drainage/aeration
- Soil moisture
- Organic matter
- CEC

