Soil Test K: Recent Revelations

Soil, Water, & Nutrient Management Meetings November 30 – December 9, 2010

Carrie Laboski

CHANGES IN SOIL TEST K OVERWINTER

Is this really a big deal?

- Past research has shown that wetting/drying, freezing/thawing, redox, and sample handling can affect STK
 - Both↑and↓STK, dependent on clay minerals
- UW soil sampling guidelines
 - Sample at the same time of year
- What happens if fall soil sampling is delayed until spring?

Objective

 To assess the effects of corn silage vs. grain removal and different STK levels on overwinter changes in STK

Potassium experiment 2006-2008

- Corn (grain/silage)-soybean-corn (grain/silage) rotation
- K fertilizer rates applied spring 2006 only:
 - O, 66, 134, 200, 266, 333, and 400 lb K₂O/a at all locations except Fond du Lac, which only received the lesser four K rates
- Soil sampled post harvest and spring preplant
 - 0-8"
 - Dried, ground, Bray K

Calculations

Overwinter change in STK =
 spring STK - fall STK

- At each location, plots were divided into 4 groups (quartiles) based on STK
 - -1 = lowest STK
 - -4 = highest STK

- At Arlington & Marshfield STK decreased overwinter for greater STK quartiles and increased over-winter for lesser STK quartiles
- Hancock consistent and significant increase of 25 ppm over-winter; small range in STK; can't be explained by mineralogy
- STK at Lancaster & Fond du Lac mostly increased over-winter 2006-2007; more decreases in 2007-2008
- In the 2006-2007 overwinter period, Arlington only loc. Where HMS significantly effected change in STK; likely because of greater K uptake at this locations

Summary

- At higher STK levels, K can be fixed overwinter, HOWEVER
 - Magnitude of fixation (if it occurred) was dependent on:
 - Clay mineralogy & actual STK levels
 - Year
 - Corn silage vs grain harvest
- When reviewing historical STK data be aware that time of sampling is influential

CHANGES IN SUBSOIL FERTILITY

Background

- Subsoil groups are the underpinning of P and K fertilizer recommendations
- History of subsoil groups dates to the late 1950's
- Beatty & Corey (1962) reported on a subsoil (8-20") survey conducted on various soil types throughout the state of Wisconsin

Research Question

Are subsoil fertility groups still valid after 50 years of cropping?

Effect of long-term rotation on soil test P and K levels at Lancaster (Fayette sil)

Sequence	Soil Depth						
	0-6"	6-12"	12-24"	24-36"			
	Soil test P (ppm)						
CC	17	11	23	39			
CS	27	9	17	42			
CCOAA	25	10	21	46			
	Soil test K (ppm)						
CC	122	79 b§	100 a	110			
CS	145	90 a	93 b	108			
CCOAA	202	77 b	92 b	114			

CC = continuous corn
CS = corn-soybean
CCOAA = corn-cornoat-alfalfa-alfalfa

Rotations established in 1965, except CS established in 1987. Recent sampling occurred in 2009.

No deep samples were collected in 1965.

[§] Significant at the $P \le 0.10$ level.

Effect of cropping system on soil test P in the WICST plots at Arlington (Plano sil)

System/trt	Sequence	Year	Soil Depth			
			0-6"	6-12"	12-24"	24-36"
			Soil test P (ppm)			
CS1/1	CC	1989	105 a§	65 a	29	48
		1996	91 ab	43 b	29	
		2001	85 b	43 b	28	51
		2007	59 с	29 b	25	51
CS2/3	CS	1989	98 a	43 a	24	51
		1996	66 b	30 b	28	
		2001	<i>57</i> b	38 a	23	53
		2007	37 c	22 c	23	46
CS4/7	CAAA	1989	115 a	46	35	57
All systems, net P additions are negative		1996	90 ab	47	31	
		2001	95 a	52	29	48
		2007	66 b	38	31	55

Effect of cropping system on soil test K in the WICST plots at Arlington (Plano sil)

System/trt	Sequence	Year	Soil Depth			
			0-6"	6-12"	12-24"	24-36"
			Soil test K (ppm)			
CS1/1	CC	1989	257 a§	143 a	125 a	135 a
		1996	257 a	100 b	74 c	
		2001	194 b	83 b	88 b	121 ab
		2007	204 b	81 b	89 b	112 b
CS2/3	CS	1989	199 a	121 a	134 a	1 <i>55</i> a
		1996	214 a	91 b	83 c	
		2001	126 b	90 b	99 b	118 b
		2007	121 b	75b	92 bc	103 с
CS4/7	CAAA	1989	277 a	123 a	126 a	131 a
All systems, net K additions		1996	180 b	81 b	80 b	
		2001	127 b	68 bc	82 b	96 b
are negative		2007	131 b	60 c	76 b	100 b

Effect of cropping system on soil test P in the WICST plots in Walworth Co. (Pella/Griswold sil)

System/trt	Sequence	Year	Soil Depth			
			0-6"	6-12"	12-24"	24-36"
				Soil test	P (ppm)	
CS1/1	CC	1989	66	39 a§	13	8
		1996	61	31 ab	15	
		2001	58	22 b	10	9
CS2/3	CS	1989	59	24 a	9	6
		1996	41	14 b	7	
		2001	49	13 b	8	5
CS4/7	CAAA	1989	76	39	10	8
		1996	67	21	7	
		2001	79	18	11	11

§ Significant at the $P \le 0.10$ level.

CC and CS, net
P additions are
negative

Effect of cropping system on soil test K in the WICST plots in Walworth Co. (Pella/Griswold sil)

System/trt	Sequence	Year	Soil Depth				
			0-6"	6-12"	12-24"	24-36"	
				Soil test K (ppm)			
CS1/1	CC	1989	196 a§	134	126	124	
		1996	191 a	105	114		
		2001	144 b	113	127	129	
CS2/3	CS	1989	178 a	118	126	115	
		1996	132 b	86	103		
		2001	93 с	105	125	102	
CS4/7	CAAA	1989	216 a	148 a	143 a	128	
		1996	163 b	88 b	95 c		
		2001	109 с	98 b	125 ab	121	

§ Significant at the $P \le 0.10$ level.

Conclusions???

- Subsoil K levels may decrease overtime in CC, CS, and CAAA rotations if crop removal exceeds K applications
 - Effect is location specific and may be a result of different initial STK levels, soil type, and crop management
 - Subsoil P levels appear to be unaffected
- Now have more questions regarding the validity and long-term implications of following current UWEX nutrient application guidelines for K
 - However, at this time there is not enough information to offer alternative strategies
 - Need more to fully understand K availability and redistribution in the soil under various cropping systems and fertilization strategies

