

INTEREST IN STRIP-TILLAGE IS HIGH

- > Soil conservation requirements
- > Reduced yield with no-till
- > High fuel and equipment costs
- > Timeliness of operations
- > Equipment/technological advances

MIDWEST STRIP-TILLAGE EXPO

Zip Code Map for Midwest Strip-tillage Expo Attendees

Waterloo, IA - 2007

Arlington, WI - 2008

DEFINING STRIP-TILLAGE

LESS THAN FULL-WIDTH TILLAGE OF VARYING INTENSITY WITH THE ROW DIRECTION

- > ROW OR RESIDUE CLEARING
 - Remove residue
 - > Finger coulters, brushes, sweeps
- > STRIP-TILLAGE (SHALLOW)
 - > Move residue, seedbed prep.,
 - > Row fertilizer placement
 - Fluted coulters, discs
- > STRIP-TILLAGE (MODERATE)
 - Disrupt surface compaction, deep place fertilizer
 - > Mole knives
 - Coulters move soil to create mini-ridges
- > STRIP-TILLAGE (DEEP)
 - > Remove subsoil compaction
 - > Straight-shanked knife with minimal soil inversion

RESEARCH SUGGESTS BENEFITS COMPARED TO NO-TILL

- Dryer and warmer soil (Wolkowski, Wis.)
- > Earlier planting (Vyn et. al., Ontario/Ind.)
- More consistent seed depth (Swan et al., Minn.)
- Better stands (Kaspar and Erbach, Iowa)
- > Faster early season growth (Wolkowski, Wis.)
- > Yield response (Vetsch and Randall, Minn.)
- > Net return (Yiridoe et. al., Ontario)

CONSERVATION ALTERNATIVE TO NO-TILL

- > RUSLE2 treats strip-till similar to no-till
 - > Surface disturbance 30 % vs. 15 %
 - > 15 20 % less residue
 - > Actual soil loss differences are minimal
 - > Variability of coulters, knives, etc.
- > Strip-till on the contour whenever possible
 - > May provide some additional infiltration capacity
 - Potential erosion where strips run uphill/downhill
- Best suited to fragile crop residue soybean, alfalfa, etc.
- > Equipment has been developed for corn residue

TILLAGE EFFECTS ON CROP RESIDUE

First-year corn after soybean, Arlington, Wis.

STRIP-TILLAGE AND SOIL LOSS, LANCASTER, WIS.

Runoff collector in strip-till

Sediment in chisel

Rick Cruse and Hillary Owen

Collecting sediment

SOIL LOSS - A TALE OF TWO YEARS

2004				2005			
		Soil loss				Soil loss	
Date	Precip	Chisel	Strip	Date	Precip	Chisel	Strip
5-14	0.95	0.12	0.006	6-6	0.96	0.05	0.02
5-21	0.50	0.14	0	6-27	5.00	80.0	0.01
5-24	3.09	2.82	0.23	7-26	3.60	0.001	0
6-1	4.85	0.39	0.39	7-29	1.30	0.10	0.12
6-17	2.51	0.71	0	8-19	3.28	0.05	0.01
7-12	1.24	0.27	0.009	9-19	1.44	0.02	0
8-4	1.11	0.22	0				
Total		4.67	0.64			0.30	0.16

STRIP-TILLAGE AND EARLY GROWTH

SOIL TEMPERATURE AFFECTED BY TILLAGE AND CROP RESIDUE

Effect on crop residue, Arlington, Wis.

Effect on in-row soil temperature, Arlington, Wis.

Wolkowski, 2000

MAIN EFFECTS OF TILLAGE ON CORN EMERGENCE, ARLINGTON, 1994-1996

EARLY GROWTH AND SILKING PROGRESS AS AFFECTED BY TILLAGE

Tillage system	V6	V12	Silking
	g/plant		%
Chisel	1.1	29	80
Strip-tillage	1.1	28	62
No-till	0.7	18	36

Arlington, avg. of 3 years

ARLINGTON TILLAGE PROJECT

- ► Tillage/rotation study since 1997
 - Plano silt loam soil
 - Strip-till added in 2000
 - ▶ '97 '99 row clearing
 - Continuous corn, Soybean/corn, Corn/soybean
 - PK fertilizer: None, broadcast, deep, and row-placed at crop removal rate

EARLY SEASON K UPTAKE IN STRIP-TILL

Soybean/corn rotation

CORN GRAIN YIELD AS AFFECTED BY FERTILIZER PLACEMENT IN STRIP-TILL

4-year avg. (2001 - 2004)

TILLAGE AND ROTATION EFFECT ON CORN YIELD, ARLINGTON, WIS. 1997 – 2007 (10 YEAR AVG.)

TILLAGE AND MANURE MANAGEMENT

MANURE AND TILLAGE RESPONSE

Arlington, Wis. (2 year avg.)

AUTO-STEER AND GUIDANCE CONSIDERATIONS

BENEFITS OF AUTO-STEER

- Reduce overlap and skips
- Optimizes fuel use, time, chemical and nutrient inputs, and implement wear
- Maximizes plant growth
- Controls traffic to reduce compaction
- Reduces operator fatigue

DIFFERENTIAL GPS CORRECTION

- Sub-meter (3 ft.)
 - WAAS, USCG Beacon, Omnistar VBS, Starfire I,
- Decimeter (2-6 in.)
 - Starfire II, Omnistar XP & HP
 - Requires subscription
- ► RTK (1 in.)
 - Real Time Kinematic
 - Survey in the base station
 - Line of sight required

GPS ACCURACY

- Pass-to-Pass vs. Long Term (Year-to-Year)
- ▶ Time of day
- Extended breaks during field operations
- Multiple operations
- Loss of signal near treelines, buildings, etc.

ECONOMIC CONSIDERATIONS

ROTATION/TILLAGE	AVG. YIELD (BU/A)	COP (\$/BU)	COMPARED TO CH (\$/BU)	
Continuous Corn				
Chisel	182	2.55		
Strip-till	174		- 0.02	
No-till	167	2.63	80.0	
Corn after Soybean		7		
Chisel	194	2.39		
Strip-till	trip-till 194		- 0.12	
No-till	185	2.36	- 0.03	
Soybean after Corn	/ / \	->(/_		
Chisel	52	6.41		
Strip-till	52	6.23	- 0.18	
No-till	50	6.15	- 0.26	

Arlington, Wis. (1997 - 2007)

SUMMARY

- Strip tillage offers a residue management compromise between no-till and full-width systems
- Under conditions of intensive rainfall strip-tillage conserved soil
- The creation of a residue-free strip offers warmer and drier conditions at planting
- Response to fertilization similar to no-till
- Compared to chisel 10-year average grain yield similar in first-year corn; 4% lower in cont. corn
- Carefully evaluate upgrades to auto-steer and RTK GPS
- Production economics favor strip-tillage in firstyear corn and no-till in soybean after corn