Stabilization-Structure Impact on Non-Point Source Pollution in the Unglaciated Area of Wisconsin

Kyle Minks, Birl Lowery and Fred Madison

Major Contributor of Non-Point Source Pollution

- 3,533,205 miles of streams and rivers in the US
- 26% (934,799 miles) assessed by the EPA for impairment
 - 50% of all assessed streams were found to be impaired
 - Agriculture primary cause

http://iaspub.epa.gov/waters10/attains_nation_cy.control#prob_source

Soil Loss

- 1930 annual soil loss
 - 33.4 metric tons ha⁻¹
 (14.9 tons acre⁻¹)
- 1933 Soil Conservation Service
 - Coon Creek Watershed project
- 1992 annual soil loss
 - 14.1 metric tons ha⁻¹ (6.3 tons acre⁻¹)

Current Problem

- Driftless Area Unit-area loads
 - 73 mt km⁻² (209 t mile⁻²) of suspended sediment
 - 88% higher then state average
 - 153 kg km⁻² (875 lbs mile⁻²) of total phosphorus
 - 35% higher then state average
- Annual total suspended sediment from storm-runoff
 - Driftless area 93-95%
 - Southeast WI till plains 59-66%

At-Grade-Stabilization-Structure

- Located at base of forested hill slope
- Similar to a sedimentation basin

Sedimentation Basin Research

- Edwards et al. (1999)
 - Trapping efficiencies of simulated agricultural runoff
 - Suspended sediment
 - 87.5 to 97.0%
 - Total Phosphorus
 - 32.2 to 65.8%
 - Total Nitrogen
 - 72.5 to 80.7%
- Fiener et al. (2005)
 - Basins trapped 54-85% of incoming suspended sediments

Conservation Practice Comparisons

		Soil		
		erosion/Sediment	Total wate	r and soil
Practice	Runoff	yield	losses (lb ac ⁻¹)
	(in)	(t ac ⁻¹ year ⁻¹)	N	Р
Moldboard plow	5.2	15.0	55.6	21.0
Typical tillage	4.8	7.8	35.8	13.1
No tillage	4.2	1.0	9.7	3.1
Contour farming	4.4	3.9	15.9	5.3
Strip cropping	4.4	2.9	12.9	4.2
Terraces surface- drained	4.4	2.3	11.0	3.4
Water and sediment control basins	3.9	0.4	6.5	1.6

Estimated annual soil and nutrient losses under various erosion control practices.
Central lowa climate, average over 10 lowa soils, and a 72.6 foot long slope of 9% and a 300 foot long slope of 5%.

Research Purpose

 To determine if installing an At-Grade-Stabilization-Structure (AGSS) improved runoff water quality

Objectives

- 1. A comparison of precipitation, runoff volumes, and suspended sediment concentrations before and after installation of an AGSS.
- 2. A comparison of phosphorus and nitrogen concentrations before and after installation of an AGSS.
- 3. An analysis to determine the trapping of sediments by the AGSS.

Study Site Location

- Two paired watersheds
 - South (control)
 - 87 ha (215 ac)
 - 47% forested
 - 18% agriculture
 - 34% hay/pasture or CRP
 - North (treatment)
 - 174 ha (430 ac)
 - 59% forested
 - 39% agricultural
 - 5% hay/pasture of CRP

Monitoring

- Data collected from
 - Oct 2001 Sept 2008
 - USGS monitoring equipment
 - Stream gauging stations
 - Meteorological stations
 - Soil temperature probes

Watershed Pairing

North vs. South Basin Pairing

Evaluation

- Compare north and south
 - Non-frozen ground
 - Paired storm runoff events
 - Before installation of the AGSS to after
- Pre installation time period
 - Oct 2001-June 2005
- Post installation time period
 - July 2005-Sept 2008
- Parameters being compared
 - Precipitation
 - Runoff
 - Suspended Sediment
 - Phosphorus
 - Nitrogen

- Evaluate for changes within each watershed using a linear mixed effects (LME) model
 - SAS 9.2

Precipitation

Runoff

Suspended Sediment

Total Phosphorus

Phosphorus

Total dissolved phosphorus

- Average concentration (mg L⁻¹ event⁻¹)
 - North
 - Before=0.21
 - After=0.19
 - South
 - Before=0.18
 - After=0.40
- No significant differences

Phosphorus components

Total phosphorus = Dissolved Phosphorus

+

Particulate Phosphorus

- Total Phosphorus has significant difference, total dissolved phosphorus does not
 - Particulate phosphorus reduced

Nitrogen Components

Total nitrite + nitrate

- Average concentration (mg L⁻¹ event⁻¹)
 - North
 - Before=0.30
 - After=-0.08
 - South
 - Before=0.01
 - After=1.04
- No significant differences

Total ammonium

- Average concentration (mg L⁻¹ event⁻¹)
 - North
 - Before=0.48
 - After=0.10
 - South
 - Before=0.09
 - After=0.10
- No significant differences

Total Organic Nitrogen

AGSS Sedimentation Evaluation

- Within the AGSS
 - Extraction of eight soil cores
 - Two to three soil subsamples removed from each core
 - Particle size analysis to determine sediment deposition
- Surface soil (0-5.5 cm) comparison
 - Particle size analysis on
 - Eight samples within the AGSS
 - Six samples from adjacent valley
 - Three samples from ridge top
 - Evaluate statistical differences in the amount of sand, silt, and clay at each location.

Within the AGSS Evaluation

- As depth increases
 - Amount of clay and silt decreases
 - Amount of sand increases

Sedimentation Evaluation

Average Soil Texture (0-5.5 cm) at Each Sampling Location

Location	Sand (%)	Silt (%)	Clay (%)
AGSS (8)	12	51	37
Valley (6)	29	47	29
Ridge (3)	5	62	32

() indicates number of soil samples

- Significantly different at P<0.05
 - Valley vs. AGSS
 - Significantly more clay in the AGSS
 - Significantly more sand in the valley
 - Ridge vs. AGSS
 - Significantly more clay and sand in the AGSS
 - Significantly more silt in the ridge

Conclusion

- At-Grade Stabilization Structure reduced
 - Suspended sediment concentrations
 - Total particulate phosphorus concentrations
 - Organic nitrogen concentrations
- The At-Grade Stabilization Structure also contained surface soil samples with significantly greater clay content then the surrounding landscape.
- At-Grade Stabilization Structures are inexpensive to construct (<\$2000), and occupy a relatively small land area (1-2 acres).

Questions?

