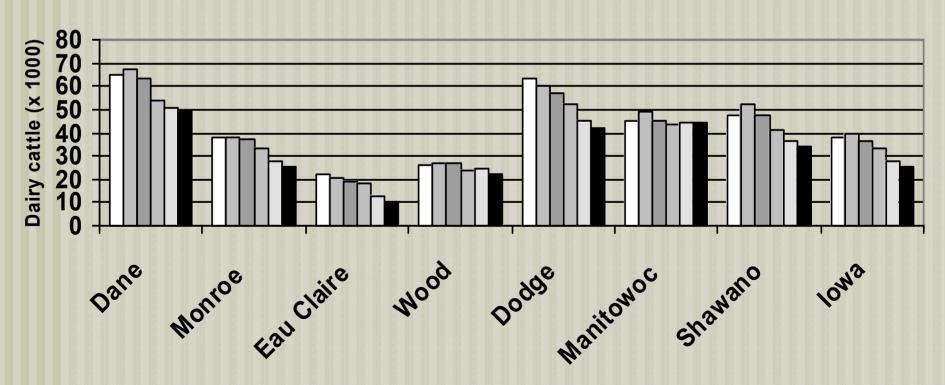
Tillage Management for Firstyear Corn after Soybean

Dept. of Soil Science, UW-Madison



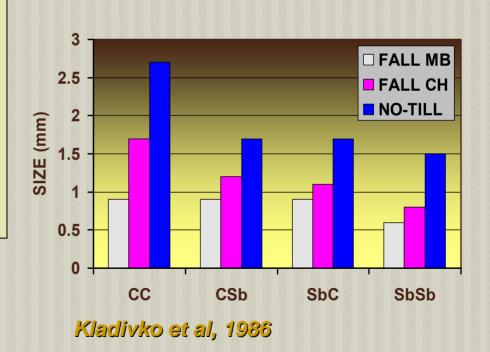
Wisconsin's agriculture is changing

- Overall decline in dairies and cow numbers
 - Less alfalfa acreage
 - Less organic addition as manure/bedding
 - Some counties constant, but larger herds
- Conversion to row cropping
 - Soybean acreage up dramatically
 - Lack of viable alternative crops
- Difficult to overcome the culture of tillage
 - Some changes due to fuel, time, and equipment

Change in dairy cow numbers since 1980

Source: Wisconsin Ag. Statistics

Change in soybean acres since 1980

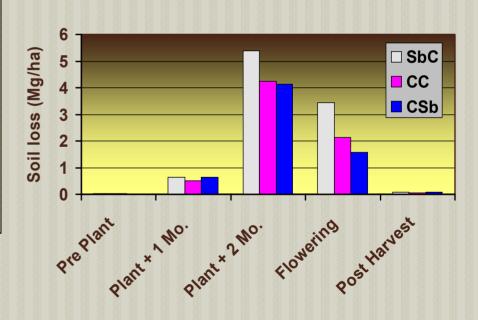

Year	Dane	Monroe	Eau Claire	Wood	Dodge	Manitowoc	Shawano	Iowa
				- Acres (x	1000) -			
1980	10.5	2.0	6.0	0.7	2.5	0.6	0.1	1.5
1985	14.9	2.5	5.2	1.4	6.1	1.3	0.7	2.4
1990	20.1	3.7	9.1	2.1	10.3	2.3	1.2	3.1
1995	42.3	5.2	8.4	5.3	30.0	7.4	6.4	9.0
2000	90.5	12.6	15.5	11.3	67.3	22.6	12.0	27.2
2005	80.9	17.5	19.8	12.2	63.3	23.1	19.9	30.9

Source: Wisconsin Ag. Statistics

Impact of soybean on soil quality

Soybean reduces aggregate stability

- Aggregation important for aeration, drainage
- Tillage and aggregate stability interaction
- Tillage of soybean stubble
 low residue with poor stability


Increased potential for soil erosion

Soybean reduces aggregate stability

- Aggregation important for aeration, drainage
- Tillage and aggregate stability interaction
- Tillage of soybean stubble
 low residue with poor stability

Average Annual Soil Loss

SbC = 4.2 ton/a CSb = 2.8 " CC = 3.1 "

Laflen and Moldenhauer, 1979 Avg. of seven seasons 6 % slope; silt loam soil

Questions

Is tillage required to maximize corn production following soybean?

Even if yield is increased by tillage will it be economically viable?

What are the environmental consequences of tilling soybean ground?

Research examining first-year corn after beans (15 site-years)

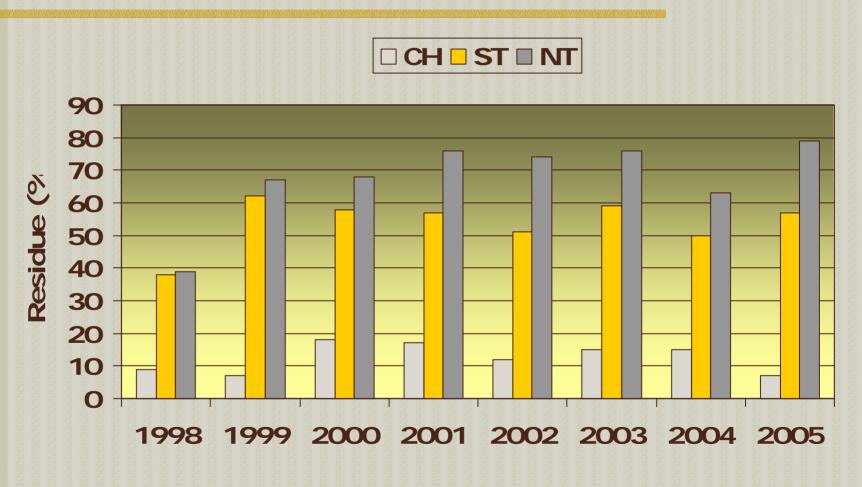
Three research studies

- Lancaster 2004 2006
 - Fall chisel, spring FC, strip-till, NT
- Arlington 1998 2006
 - Fall chisel, strip-till, NT
- Waseca (MN) 2000 2003
 - Fall chisel, spring FC, deep and shallow strip-till, NT

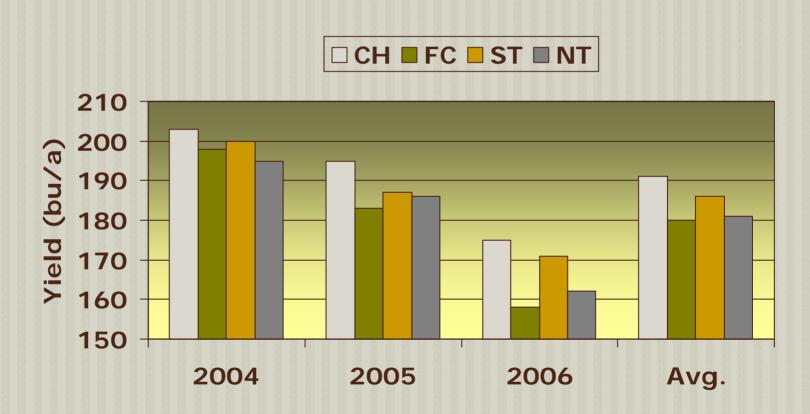
Wisconsin tillage treatments

Remlinger strip-till tool

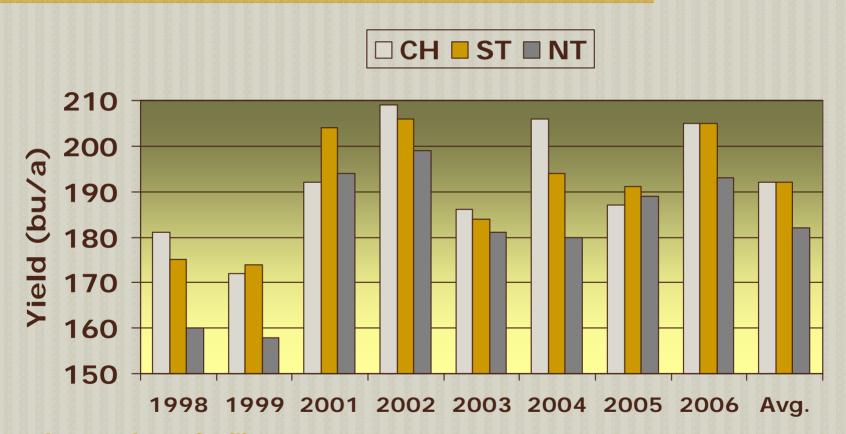
LARS coulter chisel w/ sweeps



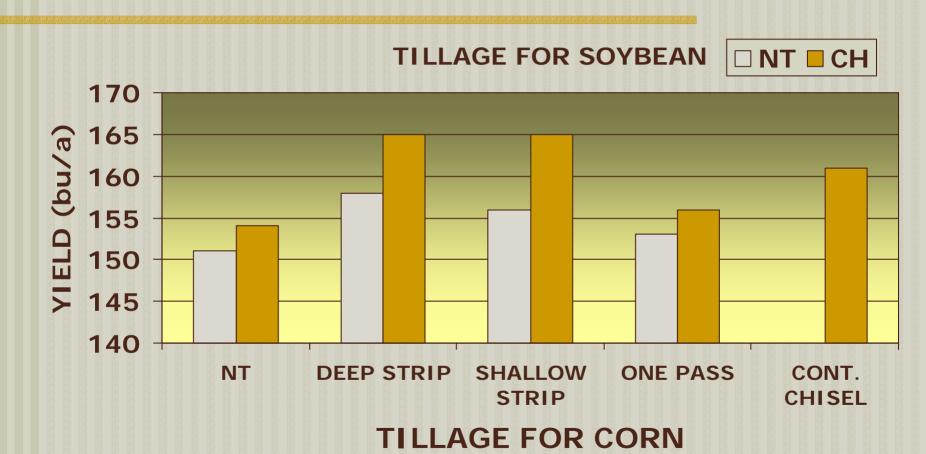
Following strip-tillage


Following chisel plowing

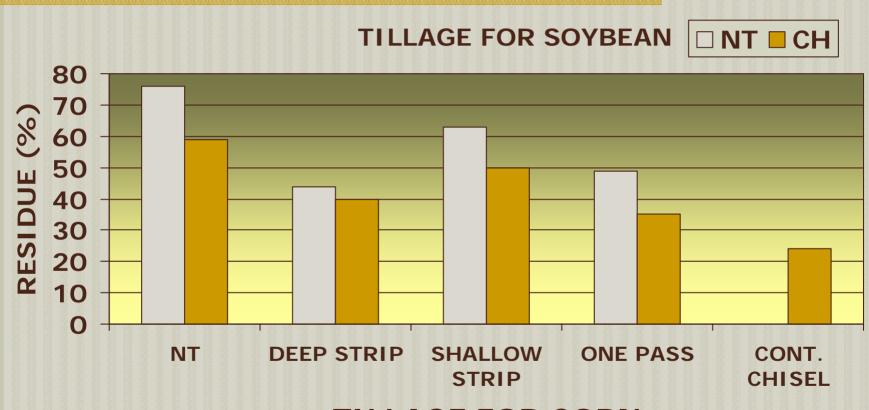
Tillage effects on crop residue


Arlington, Wis.

Tillage effects on yield at Lancaster


Averaged over K placement and rate treatments

Tillage effects on yield at Arlington


Averaged over fertilizer treatments

Effect of tillage management on the yield of firstyear corn in a C/Sb rotation (four year avg.)

Averaged over cultivation treatments

Effect of tillage management on the yield of firstyear corn in a C/Sb rotation (four-year avg.)

TILLAGE FOR CORN

Averaged over cultivation treatments

Soil loss measurements

Contour strip at Lancaster ARS, 8 % slope

- Chisel and strip-till only
- ISU Passive runoff collectors
 - Collection area 5 x 20 ft.
 - 1:1000 collection ratio
 - Sample after every runoff event
 - Back-calculate to estimate soil loss
 - In-season measurements only

Passive runoff collectors

Runoff collector in strip-till

Sediment in chisel

Rick Cruse and Hillary Owen

Collecting sediment

Soil loss in first-year corn, Lancaster

2004				2005			
		Soil loss (t/a)				Soil loss (t/a)	
Date	Precip	Chisel	Strip	Date	Precip	Chisel	Strip
5-14	0.95	0.12	0.006	6-6	0.96	0.05	0.02
5-21	0.50	0.14	0	6-27	5.00	80.0	0.01
5-24	3.09	2.82	0.23	7-26	3.60	0.001	0
6-1	4.85	0.39	0.39	7-29	1.30	0.10	0.12
6-17	2.51	0.71	0	8-19	3.28	0.05	0.01
7-12	1.24	0.27	0.009	9-19	1.44	0.02	0
8-4	1.11	0.22	0				
Total		4.67	0.28			0.30	0.16

Why might chisel be the wrong tillage choice for erodible soils

Soil loss values from Snap-Plus Input: Four yr. CSb; 8 %; Chisel Sb vs. Cont. NT

Site	Soil	Soil los	ss (t/a)
100 100 100 100 100 100 100 100 100 100	10 10 10 10 10 10 10 10	Chisel Sb	Cont. NT
Madison	Plano	2.2	1.2
Sparta	Norden	6.8	1.8
Eau Claire	Elk Mound	3.1	1.1
Marshfield	Withee	6.6	1.6
Juneau	Dodge	5.8	1.4
Kiel	Kewaunee	3.2	0.8
Shawano	Antigo	4.7	1.1
Dodgeville	Fayette	6.5	1.4

A partial budget for tillage of first-year corn after soybean

Source: 2004 Wisconsin Ag. Custom Rate Guide

Item	Chisel	Field Cult.	Strip-till	No- till	
Return	\$/a				
Avg. Yield (bu) x \$3/bu			-		
Total					
Cost					
Primary tillage	13.30				
Secondary tillage	10.20	10.20	10.00/14.90		
Planting	14.30	14.30	15.00	15.00	
Total	37.80	24.50	25.00/29.90	15.00	
Net					

Profitability of tillage choice for first-year corn after soybean

Averaged over four years

Tillage	Lancaster	Arlington	Waseca				
25 155 77 151 57 155 155 155 75 150 57 150 151 151 151 151 151 151 151 151 151	27. 26. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10		NT for Sb	CH for Sb			
Chisel	547	538		445			
Field Cult.	520		439	437			
Strip-till-S	538	551	448	464			
Strip-till-D	10		452	461			
No-till	528	531	438	436			

Summary

- Wisconsin is experiencing changes in cropping practices that influence soil quality
- Research demonstrates lower aggregate stability following soybean
- Tillage response: CH=ST>FC=NT
- Erosion potential much greater with chisel
- Economics favor strip-tillage