Tillage and Fertility Opportunities and Challenges

Dick Wolkowski
Department of Soil Science
UW-Madison
rpwolkow@wisc.edu

Today's potpourri of issues

- Vertical tillage/subsoiling
- Crop residue management alternative
- Fertilizer placement
- Foliar feeding

Vertical tillage

- Defined as deep tillage designed to create vertical zones by cutting a slot, shattering, and lifting the soil
 - Minimal inversion
 - Prepares seedbed
 - Various spacings
 - Fall or spring
- What is the motive for deep tillage
 - Part of a system associated with crop management programs, e.g. Zone-till™, ProfitPro™
 - Compaction not diagnosed
 - Response to poor soil condition (aka subsoiling)
 - Compaction diagnosed

"Vertical tillage" implements

Are all situations responsive to deep tillage? Soil bulk density profile, Arlington, Wis., 1998

EFFECT OF TILLAGE AND K FERTILIZATION ON FIRST-YEAR CORN YIELD AFTER SOYBEAN (2 yr. avg.)

Arlington, Wis.

Soil abuse that causes compaction is all too common

Deep tillage can be beneficial where compaction is diagnosed

Sunflower tool used in Hancock deep tillage study, 2003

Cone index in a potato hill as affected by compaction and deep tillage, Hancock, Wis.

There are differences between subsoilers

"Conservation"

- Cutting coulters
- Straight shanks
- Horizontal points

"V-Ripper"

- Leading disks
- Parabolic shanks
- Winged points

EFFECT OF SUBSOILER TYPE ON SOYBEAN AND CORN YIELD ON A SILTY CLAY LOAM SOIL

Manitowoc, Wis.

Compacted soils are responsive to K fertilization

Corn response to 45 lb K₂0/a in row

3 yr. avg. Oshkosh, Wis. Alfalfa response to soil test K

Sum of 3 hay years Arlington, Wis.

DETERMINING THE NEED FOR SUBSOILING

Crop Residue Management: Regional trend for more CT

- Eight Midwestern states:
 - 106 million acres of cropland
 - 37 percent of all U.S. cropland
- 46% of no-till acres in U.S. in the Midwest
- 2002 Midwest data
 - 17 million acres of no-till soybeans
 - 7 million acres of no-till corn
 - Forty-five million acres (42.5 %) used conservation tillage

CTIC Website (2002 data)

Wisconsin behind regional trend

CTIC Website (2002 data)

Tillage has a measurable effect on the soil condition

Direct or interactive effects

- Physical
 - Residue modifies temperature and moisture
 - Consolidation vs. loosening
- Chemical
 - Nutrient and pH stratification
- Biological
 - C distribution
 - N transformations

Soil temperature affected by tillage and crop residue

Effect on crop residue, Arlington, 1994

Effect on in-row soil temperature,
Arlington, 1994

Effects of long-term tillage on the plow layer pore size distribution

Pore Size

Fertilizer placement affects corn root distribution (0-6 in.)

		Root length (km/m³)			
Tillage	Fert. placement	Row	Untracked Inter-row	Tracked Inter-row	
СН	ROW	17.1	3.0	0.8	
СН	INTER-ROW	12.0	4.4	1.4	
NT	ROW	19.8	2.5	0.8	
NT	INTER-ROW	10.8	6.1	1.5	

Kaspar et al., 1991

Controlled traffic is a key to making reduced tillage work

- Controlled traffic research, Australia
- Practiced on 2.5 million acres
- 500 GPS guided tractors
- Research shows 10-15% yield increase from controlled traffic

Strip tillage expands crop residue management

Three categories

- ROW OR RESIDUE CLEARING
 - **REMOVE RESIDUE**
 - FINGER COULTERS, BRUSHES, SWEEPS
- STRIP TILLAGE (SHALLOW: < 6 in.)</pre>
 - MOVE RESIDUE, SEEDBED PREP., ROW FERTILIZER
 - FLUTED COULTERS, DISCS
- STRIP TILLAGE (DEEP: > 6 in.)
 - DISRUPT COMPACTION, DEEP-PLACE FERTILIZER
 - **MIVES**
 - SOME WITH COULTERS TO MOVE RESIDUE OR CREATE MINI-RIDGES

Tillage and P and K availability

Possible issues

- Nutrient stratification
 - Surface applied nutrients
 - Crop residues
 - Vertical and horizontal
- How to collect a representative sample
- Fertilizer placement considerations

Soil test stratification following five years of tillage management, Arlington, Wis.

Wolkowski, 2003 (Corn/soybean rotation)

Reduced tillage is more responsive to fertilization

- Positional availability
 - Surface vs. sub-surface
 - Wheel track vs. non-wheel track effects on root distribution
- Reduced P and K fixation by the soil
- Reduced K uptake from zones of poor aeration
- Complete starter material recommended

INTERACTIVE EFFECT OF TILLAGE AND ROW FERTILIZER, ARLINGTON, 1994-1996

EFFECT OF ROTATION, TILLAGE, AND FERTILIZER ON TISSUE K CONCENTRATION 45 DAP, ARLINGTON, WIS., 2001

	CC		SbC			
	CH	ST	NT	CH	ST	NT
	%			%		
NONE	2.23	2.37	2.35	1.65	1.34	1.40
BDCT	2.35	2.19	2.51	2.51	2.18	1.40
2 x 2	2.85	3.26	2.31	2.46	2.58	2.16

RESPONSE OF CORN TO TILLAGE AND FERTILIZER PLACEMENT, ARLINGTON, WIS. 2001-2003

200 lb 9-23-30/a

Foliar fertilization of crops

- Plants are not made to absorb nutrients through leaves
- Nutrient use by crops is substantial
- Leaf damage likely because of salt injury
- Most research with soybean (podfill)
- Micronutrients (B and Mn) for soybean under certain conditions

Response of soybean to foliar fertilization at three Minnesota locations

	Waseca	Becker	Rosemount		
Treatment	bu/a				
Control	54	56	61		
Foliar (NPKS) 4x	57	53	63		

Summary of Midwest research for foliar B on soybean

	IL	MO	ОН	WI
Treatment	bu/a			
Control	42.2	43.0	52.4	51.2
Foliar	43.2	43.3	53.3	51.5
Soil	38.3	42.8	52.5	51.9

Avg. of 0.25, 0.5, and 1.0 lb B/a foliar; 3 lb B/a soil

Response of soybean grown on a high pH, high O.M. soil to Mn fertilization

Treatment	Mn Rate	Yield	
	lb Mn/a	bu/a	
Control		50	
Row	10	61	
Row	20	64	
Row	40	63	
Foliar (2x)	0.5	62	
Foliar (2x)	1.0	61	
Foliar (2x)	2.0	59	

Randall et al., 1975 2 yr. avg.

Summary

- Consider your motive and need for deep tillage
- Subsoiling more likely to be beneficial where compaction is identified
- Avoid compaction
 - Stay off wet soils
 - Watch load weight
 - Control traffic
- Tillage has a profound effect on soil properties and affects nutrient availability
 - Residue increases water content and lower temperature
 - Soil is more consolidated

Summary

- Reduced tillage has numerous benefits
- pH, P, and K stratify
- No-till (strip-till) corn is more responsive to fertilization
- Band placement often beneficial, however broadcast may be acceptable
- Foliar fertilization not recommended for NPKS
- Foliar fertilization can be useful where a micronutrient need is identified