GETTING THE MOST FROM N AND P APPLICATIONS ON PROCESSING CROPS

Larry G. Bundy

Dept. of Soil Science

Univ. of Wisconsin

MRTN Corn N Rate Guidelines

- Introduced for the 2006 growing season
- In response to higher N costs
- Based on results of numerous N response experiments
- Goal is to maximize economic return from N use

Impact of Price Ratio on MRTN for Irrigated Sands

N:Corn		ops except forage	
Price Ratio	low	MRTN	high
\$/lb:\$/bu		—— lb N/a ——	
0.05	200	215	230
0.10	190	205	220
0.15	180	195	210
0.20	175	190	200

Includes starter N

N & P Recommendations for Processing Crops

- N rates remain unchanged
 - -Insufficient data for MRTN
 - -Higher value per unit of yield
- Prates based on soil test and crop to be grown

New Nutrient Guidelines Pub.

http://www.soils.wisc.edu/extension/

http://learningstore.uwex.edu.

Nitrogen Rate Guidelines for Processing Crops

Organic	Pea	Snap bean	Sweet corn
matter (%)		lb N/acre	
< 2	40	60	150
2-10	30	40	130
10-20	20	20	110
>20	0	0	70

Nitrogen Management for Sweet Corn

- Significant N requirement
 - -130-150 lb N/acre for most soils
- Credit N from legumes and manure
- Split or delayed N desireable on coarse textured soils
- PSNT useful to identify N sufficient sites

Sweet Corn Yield Response to Nitrogen Rock County, WI

N rate	Yield, to	Yield, tons/acre		
lb/acre	Site 1	Site 2		
0	5.64 b	4.17 c		
40	6.77 a	6.08 b		
80	7.22 a	7.03 a		
120	7.55 a	6.78 ab		

Timing of Nitrogen Uptake by Corn

Time during growing season

Nitrogen rate and timing effects on corn yield and N recovery, Hancock, WI, 2003-2004

N rate	Yield	Yield (bu/acre)		overy (%)
(lb/acre)	Preplant	Sidedress*	Preplant	Sidedress*
0	96	96		
50	122	142	47	84
100	145	175	45	79
150	164	(194)	42	73
200	180	202	40	66
250	(193)	202	(37)	57
Average	161	183	42	72

^{*} Split sidedress N applied at 4 and 7 wk after planting.

Sweet corn yield response to N, Hancock, WI

	Yield		
N rate*	Year 1	Year 2	Year 3
lb/acre		tons/acre -	
0	4.43	3.44	1.90
170	9.74	11.0	8.40

^{*} N applied as ammonium nitrate in two equal split sidedress applications.

Nitrogen uptake and source by sweet corn, Hancock, WI

Plant part	Total N uptake	Fert. N uptake	Soil & water	Unknown
		lb N/a	acre**	
Ear	84	54 (32)	24	6
Residue	82	51 (30)	26	5
Total	166	105 (62)	50	11

^{* 170} lb N/acre of labeled ammonium nitrate applied in two equal split sidedress applications. ** Ave. of two years.

Nitrogen Management for Snap Beans

- Optimum N rate:
 - —About 60 lb N/acre on sandy soils
 - -About 40 lb N/acre on medium soils
- Year-to-year variation in optimum N rate
 - —Leaching losses on coarse-textured soils
 - Additional N (30-40 lb N/acre) needed if leaching is extensive
- Varieties: N needs (optimum N rates) are similar

Nitrogen Management for Snap Beans

- Excess N showed yield reduction
- N rate did not affect sieve size (measure of maturity)

Nitrogen Management for Snap Beans

- Nitrogen timing:
 - Apply part of N early in growing season (1st trifoliate)
 - Split N applications are sometimes superior (especially when leaching is extensive)
 - Applying all N late in growing season (bud stage) is usually inferior

Phosphate and Potash Application Rates

- Crop
- Soil test level
- Yield goal
- Soil group

Soil test interpretation for peas, sweet corn, and snap beans

		Soil test			
	Р		K		
Soil	Optimum	Ex. high	Optimum	Ex. high	
		p	pm		
Medium textured	16-23	>30	91-120	> 220	
Sands	26-37	>55	81-120	> 220	

Relationship between P soil test and phosphorus fertilizer recommendation

Recommendation
Crop removal +
Crop removal
½ Crop removal
None

Suggested phosphate & potash application rates at optimum soil test levels

		Application rate*		
Crop	Yield goal	P_2O_5	K ₂ O	
	tons/acre	lb/a	acre	
Peas	2-3	25	45	
Sweet corn	8-10	30	55	
Snap beans	5.6-6.5	30	120	

^{*} Approximately equal to crop removal

Phosphate and potash removal by vegetable crops (per ton of yield)

	Crop removal		
Crop	P_2O_5	K ₂ O	
	lb/to	on*	
Sweet corn	3.3	6	
Snapbeans	5.0	20	
Peas	9.2	18	

^{*} Fresh weight

Maximum Recommended Starter Fertilizer Rates for Corn

	Soil type		
Placement method	Sands	Silts and Clays	
With seed (pop-up)	50 ¹	50 ¹	
Side (2" x 2")	300	500	

1/ Limit the N + K_2O to $\underline{10}$ lbs/acre

Effect of starter fertilizer rate and placement on sweet corn stand and yield

Rate/	Place-	Plant	Yield
analysis	ment	spacing (in)	(tons/acre)
None		11.3	8.14
44/9-18-9	seed	12.0	8.17
44/7-23-5	seed	13.1	8.32
200/7-23-5	3 x 3 (in)	10.3	7.95

Soil test P=28 ppm; K = 190 ppm

Snap Bean Response to Starter Fertilizer on Manured Soils ¹

	Yield (to	Yield (tons/acre)	
Year	Starter ^{2/}	No starter	
1	5.33	5.96	
2	6.16	6.69	

^{1/} Stellato, et al., 1999.

²/ Starter = 200 to 250 lb/a of 9-23-30; manure = 25 tons/acre dairy manure

Nutrient Management for Peas

- Lime to pH 6.0
- Relatively low nutrient requirement
- Preplant broadcast of complete fertilizer is common (200 lb/acre of 9-23-30 or similar)
- Fertilizers applied with drill at planting are suitable, but not often used
- Optimum soil test levels:
 - -P = 16-37 ppm
 - K = 81-120 ppm

Nutrient Management for Snap Beans

- Lime to pH 6.0 or higher (Target = 6.8)
- Relatively low nutrient requirement
- Nitrogen management critical
- Optimum soil test levels:
 - -P = 16-37 ppm
 - -K = 81-120 ppm

Nutrient Management for Sweet Corn

- Lime to pH 6.0
- Significant N requirement, relatively low P and K removal (harvested portion only)
- Optimum soil test levels:
 - -P = 16-37 ppm
 - -K = 81-120 ppm