EFFECTIVENESS OF FILTER STRIPS FOR NUTRIENT REMOVAL

Dick Wolkowski

Department of Soil Science

UW-Madison

FEATURES BENEFITING FROM VEGETATIVE FILTER STRIPS

- PERENNIAL AND EMPHEMERAL
 STREAMS OR DITCHES
- LAKES AND PONDS
- WETLANDS
- KARST FEATURES AND CREVICED BEDROCK
- WELLS

FILTERING SEDIMENT IS THE MOST IMPORTANT FUNCTION

- AS FLOW VELOCITY SLOWS, SEDIMENT SETTLES OUT
- SHEET FLOW REQUIRED
- NEED TO REMOVE SUSPENDED CLAY
- FILTERING AFFECTED BY:
 - SOIL POROSITY
 - VEGETATION TYPE
 - SLOPE

- AGE
- MANAGEMENT
- RUNOFF VOLUME

MECHANISMS THAT REMOVE POLLUTANTS IN FILTER STRIPS

- NUTRIENTS STORED IN SOIL
- PHOSPHORUS FIXED ON MINERAL SITES
- NITRATE-N DENITRIFIES
- PLANT UPTAKE
- STORAGE IN PLANT TISSUE (ESPECIALLY TREES)
 - HARVESTED AND REMOVED
 - MAY BE RELEASED FROM VEGETATION
- MICROBES BREAKDOWN ORGANICS

EXAMPLE 1: RIPARIAN FILTER STRIP INSTALLATION

- WESTERN SAUK CO.
- CROPPED UP TO STREAM EDGE
- CHANNELIZED UPLAND RUNOFF
- AREA CONSISTENTLY WET
- COST SHARING >\$100/ACRE/YR
- 60 FT. FILTER STRIP

EXAMPLE 2: FENCING, STREAMBANK STABILIZATION, AND FILTER STRIP INSTALLATION

- BROWN CO., 200 MILES
- \$500/A PERMANENT EASEMENTS
- LIVESTOCK IN RIPARIAN AREA
- STREAM BANK STABILIZED
- FILTER STRIP INSTALLED
- LANDSCAPE RECOVERS QUICKLY

Ashwaubenon Creek Tributary, Brown Co. (Source: Bill Hafs)

Before

Two years later

Multi-Species Riperian Buffer Strip Model

RELATIONSHIP BETWEEN STORM INTENSITY AND RUNOFF AMOUNT

ROBINSON et al., 1996

RELATIONSHIP BETWEEN STORM INTENSITY AND RUNOFF SEDIMENT CONTENT

ROBINSON et al., 1996

EFFECT OF BUFFER WIDTH ON SEDIMENT DEPOSITION

Smith, 1992

VEGETATION TYPE AND NUTRIENT REMOVAL

WIDTH	GRASS	SEDI- MENT	TOTAL N	TOTAL P	PO ₄ -P
ft.		% REMOVED			
10	SWITCH	69	32	40	38
	COOL SEASON	62	24	35	30
20	SWITCH	78	51	55	46
	COOL SEASON	75	41	49	39

BUFFER EFFECT ON NUTRIENT REMOVAL FOLLOWING MANURE APPLICATION

DENITRIFICATION IS A MAJOR PROCESS

- OCCURS IN ROOTZONE AREA WHERE CARBON IS AVAILABLE
- MOST ACTIVE IN THE FIRST 15-30 FT.
- RANGE 18 55 lb N/A/YR
- VARIES DEPENDING ON SITE CONDITIONS
- YEAR-ROUND IN WARMER CLIMATES

NITRATE AND CHLORIDE IN SHALLOW GROUNDWATER MOVING FROM AN AG. FIELD

REMOVAL OF SUBSURFACE NITRATE-N IN RIPARIAN FORESTS FILTERS

GILLIAM et al., 1997

MANAGEMENT OF FILTER STRIPS

- PROTECT FROM GRAZING
 - FENCE MAINTENANCE, FLOOD DAMAGE
 - CATTLE CROSSINGS
 - MANAGED GRAZING
- MOW
 - BRUSH CONTROL
 - HARVEST GRASS
- AVOID VEHICLE TRAFFIC IN FILTER
 STRIP

OTHER CONSIDERATIONS

COMBINE WITH UPLAND PRACTICES

SITE IN THE UPPER PART OF WATERSHEDS

