Potpourri of Hot Topics

Electronic improvements at UW - Soil and Plant Analysis Lab

2. Sulfur research update

3. Soil sampling requirement clarification

4. Risk from copper sulfate footbaths

New Report/Information Formats

- Plant analysis
- Forage quality
- Manure analysis
- Routine farm soil info

Electronic options at Madison

- On-line info sheets (RFS and L&G)
- On-line account access
- On-line payment
- Soil test summaries
- E-newsletter

Online information sheet

Online account

Online credit card payment

Sulfur Responses and the Wisconsin Alfalfa Sulfur Survey

K.A. Kelling, P.E. Speth, and S. van Wychen Department of Soil Science Univ. of Wisconsin-Madison

Sulfur responses at on-farm trials

	1999	2000		2001		
S rate	Man	FDL	Man	Dodge	FDL	Dodge
lb/acre T/acre						
0	3.28	4.75	4.08	5.11	5.56	3.70
25	3.23	5.36	4.48		5.68	
50	3.83		4.91	5.27		4.08
P value	0.08	< 0.01	0.06	0.15	0.45	0.02

Wisconsin Alfalfa Sulfur Survey:

- Sample numbers:
 - 53 in 2000
 - 82 in 2001
 - 5 in 2002
- Obtained routine alfalfa results from WI labs
 - 462 samples 1999-2002
- 44 counties represented
- Tissue S data:
 - 0.09 to 0.58%
 - 55 of 140 survey samples < 0.25% S
 - 40 of 462 routine samples < 0.25 % S</p>

Sulfur Deficiency More Common

Conclusions:

 Sulfur deficiency possible in southern Wisconsin on medium-textured soils

```
Tissue S < 0.23 = deficient</li>
> 0.25 = sufficient
0.23 to 0.25 = maybe
```

 SAI needs work; precipitation S overweighted

Soil sampling requirements clarified

- Single recommendation per field
- Minimum requirements
 - More intense is OK
 - Each sample comprised of 10-20 cores

Needed intensity varies with:

1. Sampling history

- No samples in last 4 years, take 1 sample / 5 acres
- Have samples use table as guide

2. Expected responsiveness

- If either P or K in high range or below, take 1 sample / 5 acres
- If both P and K are VH or EH, use table

Recommended sample intensity for nonresponsive fields tested within past 4 yrs

Field size	Suggested sample
(acres)	number*
< 5	1
5-10	2
11-25	3
26-40	4
41-60	5
61-80	6
81-100	7

^{*10} cores/sample minimum

Multiple samples give better recommendations:

Number of samples per field	Permitted number of outliers omitted		
1-2	O		
3-4	1		
5+	2		

Small fields / contour strips with identical management / crop histories

Field size	Number of samples	Recommendations	
>5 acres	1 / strip	Similar strips	
<5 acres	Combine 2-3 strips	Similar strips	

Are copper sulfate footbaths a problem?

- Large amounts of CuSO₄•5H₂O being used, ie 50 bags every other day
- Spent bathwater added to manure slurry
- Inorganic copper fungicides have caused Cu toxicities
- Recommendations suggest lifetime loading of <30 lb/a on sands

How much Cu is being added?

Farm 1

50 lb $CuSO_4$ x 180 day x 25% Cu = 2250 lb Cu/yr

2250 lb Cu/yr over 295 acres = 7.6 lb Cu/yr

Farm 2

10,000 gal/a manure x 90 ppm Cu = 7.5 lb Cu/yr

How much copper in Wisconsin manures?

Туре	min	max	avg	load 160 lb N
		ppm Cu		lb/a/yr
Dairy solid	12	200	27	0.6
Dairy liquid	16	1320	191	2.4
Swine liquid	146	1923	673	11.1
Poultry solid	35	1350	438	3.7

Copper behavior in soil:

- Ionic and exchangeable forms available to plants
- Strongly bound by organic matter and to less extent minerals (not available)
- Availability not greatly affected by pH
- Time results in reversion to low available forms (2 weeks measured much less)
- Not moved to subsoil

Several studies with high-Cu swine manure:

No yield decreases

Up to 250 lb Cu/a added

Only small increase in plant Cu

Significant reversion occurred

Fractionation of one WI dairy manure sample

Total Cu

= 329 ppm

Water phase Cu = 0.127 ppm

Ionic Cu

= 0.00034 ppm

Howe and Helmke, 2002

Biosolids Cu loading limit guidelines:

```
> 4300 ppm ; no application
```

```
1500-4300 ppm ; 66 lb/a annual
1349 lb/a lifetime
```

<1500 ppm ; no restriction

Summary:

1. Short term likely no problems

2. Long term problems seem unlikely

3. Continued monitoring warranted

Acknowledgements:

S.M. Combs

P.A. Helmke

S.M. Lindsey

J.B. Peters

C.M. Tarazona

