OVERVIEW OF RUSLE 2

DICK WOLKOWSKI
DEPT. OF SOIL SCIENCE
UW-MADISON

WHAT IS RUSLE 2

- "GREAT GRANDSON" OF USLE
- MODEL TO PREDICT SOIL LOSS
 - WHERE OVERLAND FLOW OCCURS
 - COMPUTES ANNUAL SHEET/RILL EROSION
 - COMPUTES PARTICLE DISTRIBUTION AND RUNOFF
- CROPLAND, FOREST, LANDFILLS, CONSTRUCTION SITES, SURFACE MINES
- WINDOWS "PULL DOWN" MENUS
- INTERACTIVE

EROSION EFFECTS PRODUCTIVITY AND ENVIRONMENTAL QUALITY

- LOSS OF OM, SOIL, ROOTZONE, AND NUTRIENTS REDUCES PRODUCTIVITY
- PHYSICAL DAMAGE TO PLANTS
- FORMATION OF RILLS AND GULLIES AFFECTS MANAGEMENT
- SEDIMENTATION IN WATERWAYS, DIVERSIONS, TERRACES, DITCHES
- DELIVERY OF SEDIMENT AND NUTRIENTS TO SURFACE WATER
- LOWER LAND VALUE

EROSION IS A WISCONSIN PROBLEM

- DEGRADATION OF THE RESOURCE
 - FERTILITY
 - ORGANIC MATTTER
- WATER QUALITY
 - SEDIMENT
 - **NUTRIENTS**
- SOCIETAL COST
 - POLLUTION, DREDGING, SAFETY
 - AETHETICS

WATER EROSION PROCESS

- BEGINS WITH RAINDROPS STRIKING BARE SOIL DISLODGING PARTICLES
- INTENSE RAINS SEAL SURFACE
- WHEN RAINFALL EXCEEDS INFILTRATION WATER IS STORED IN SMALL DEPRESSIONS
- ONCE DEPRESSIONS ARE FILLED, RUNOFF BEGINS

WATER EROSION PROCESS

- INITIALLY WATER FLOWS IN A DISCONTINUOUS SHEET
- EVENTUALLY IT CONCENTRATES INTO SMALL CHANNELS OR RILLS. THE RUNOFF NOW HAS ENERGY TO BREAK OFF PARTICLES AND CUT DEEPER
- THE AMOUNT OF EROSION CAUSED BY SHEET AND RILL EROSION INCREASES WITH SLOPE AND DISTANCE
- RILLS MAY EVENTUALLY FORM GULLIES

THE SOIL WATER EROSION PROCESS

PURPOSE OF EROSION AN PREDICTION MODEL

- DEVELOP A REASONABLE ESTIMATE OF SOIL LOSS BASED ON SCIENTIFIC INFORMATION
- GUIDE MANAGEMENT DECISIONS
- EVALUATE MANAGEMENT IMPACTS
- DETERMINE PRACTICE COST:BENEFIT
- ASSESS RESOURCE INVENTORY

WHO AND WHAT OF RUSLE 2

- USDA-ARS, USDA-NRCS, VARIOUS UNIVERSITIES
- ON-GOING PROCESS OVER 70 YEARS
- THOUSANDS OF RESEARCH DATA
- SET UP WITH VARYING LEVELS OF COMPLEXITY
- COMPUTER REQUIREMENTS
 - WINDOWS 98
 - INTERNET EXPLORER BROWSER
 - 64 MB RAM
- DOWNLOAD
 - HTTP://BIOENGR.AG.UTK.EDU/RUSLE2/

APPLICABILITY OF RUSLE 2

- ESTIMATES INTER-RILL AND RILL EROSION
- ESTIMATES SEDIMENT YIELD FROM OVERLAND FLOW AND TERRACE CHANNELS
- DOES NOT ESTIMATE EPHEMERAL OR PERMANENT GULLIES, MASS WASTING, OR STREAM CHANNEL EROSION
- BEST SUITED TO CROPLAND, BUT IS USEFUL FOR CONSTRUCTION SITES, LANDFILLS, RECLAMATION PROJECTS, AND DISTURBED FOREST LAND

APPLICABILITY OF RUSLE 2 (cont.)

- BEST WHERE RAINFALL IS REGULAR AND EXCEEDS 20"/YR.
- MEDIUM-FINE TEXTURED SOILS
- SLOPES 3-20% AND LESS THAN 600 FT.
- BEST AT CALCULATING "AVERAGE ANNUAL SOIL LOSS", NOT RECOMMENDED FOR SINGLE STORM EVENTS

UNIVERSAL SOIL LOSS EQUATION

Soil Loss (t/a) = R x K x LS x C x P

- R = RAINFALL INTENSITY AND AMOUNT
- K = SOIL ERODIBILITY
 - TEXTURE
 - STRUCTURE
- LS = SLOPE LENGTH, GRADE, SHAPE
- C = CULTURAL PRACTICES
 - ROTATION
 - TILLAGE
- P = SUPPORTING PRACTICES
 - TERRACES
 - CONTOURS
 - BUFFERS

PREDICTING EROSION

TYPICAL WATERSHED

EROSION CONTROL PRACTICES

Structures: diversions, terraces, waterways

- Reduce slope length
- Slow runoff velocity
- Divert excess water safely
- Avoid runoff over barnyard, feedlots, etc.

DIVERSION AND SURFACE INLET

Fond du Lac, Co. (Note cover crop)

CONTOUR TERRACES

Grant Co.

WATERWAY MANAGEMENT?

Columbia, Co.

EROSION CONTROL PRACTICES

Management practices

- Cover crops
- Crop residue management
 - 30% residue reduces erosion 50-60%
- Contour tillage
 - Slope < 8% and 300' long
- Contour strip cropping and buffers
 - Alternating sod strip for steep land

CONTOUR STRIP CROPPING

Crawford Co.

CONTOUR BUFFER STRIPS

Chippewa Co.

RUSLE 2 – INITIAL PROFILE (PROFILE=FIELD)

STEP 1: Choose location to set climate:	Location 🗀	could be any place	▼
STEP 2: Choose soil type:	Soil 🗀	could be any soil	
STEP 3: Set slope topography:	Length along slope, ft 1. Avg. slope steepness, % 0.0	00	
STEP 4: Choose management:	Base management 🗀	Continuous\Bare ground, sr	mooth surface
STEP 5: Set Supporting practices: Contouring Strips/barriers Diversion/terrace, sediment basin Subsurface drainage system	a up-and-down slope (none) (none) (none)		Row grade, % 0.0100 Surf. cover
Soil loss erod. portion, t/ac/yr 0 Detachment on slope, t/ac/yr 0 Soil loss for cons. plan, t/ac/yr 0	014 Info 014 014 014		<u>*</u>

RUSLE 2 – SELECT LOCATION (WILL LIST BY COUNTY)

RUSLE 2 – SELECT SOIL (WILL LIST SOIL SERIES NAME)

STEP 1: Choose location to set climate:	Location 🗀	could be any place	•
STEP 2: Choose soil type:	Soil	could be any soil	<u> </u>
STEP 3: Set slope topography:	Length sandy	y loam (m-h OM, slo perm) y loam (subsoil, substratum) am (high OM)	
STEP 4: Choose management: STEP 5: Set Supporting practices: Contouring Contouring Strips/barriers Diversion/terrace, sediment basin Subsurface drainage system	silt loa silt loa a up silt loa silt loa silt loa	am (I-m OM) am (I-m OM, subsoil, substr) am (I-m OM, v. slo perm) am (m-h OM, v. slo perm) am (mod-high OM) slay (<50% clay) slav flow-mod OM.<50% clav	% 0.0100 % Surf. cover
RESULTS			
Detachment on slope, t/ac/yr Soil loss for cons. plan, t/ac/yr	0.014 Info 0.014 0.014 0.014		A

RUSLE 2 – SELECT SLOPE AND ROTATION

RUSLE 2 – SELECT CONSERVATION PRACTICE(S)

STEP 1: Choose location to set climate:	Location 🗀	Wisconsin\Madison	▼
STEP 2: Choose soil type:	Soil 🗀	silt loam (high OM)	▼
STEP 3: Set slope topography:	Length along slope, ft Avg. slope steepness, %	301 6.0	
STEP 4: Choose management:	Base management 🗀	Continuous\Corn grain; chisel	twisted shov, fall
STEP 5: Set Supporting practices: Contouring Strips/barriers Diversion/terrace, sediment basin Subsurface drainage system	d standard contouring (none) (none) (none)	V V V	Row grade, % 0.60 Surf. cov. values Surf. cover
RESULTS			
Detachment on slope, t/ac/yr Soil loss for cons. plan, t/ac/yr	3.6 3.6 3.6 3.6		<u></u>

RUSLE 2 – "DRILL DOWN" TO FINE-TUNE PRACTICE(S)

SUMMARY

- RUSLE 2 OFFERS FLEXIBILITY
- RELATIVELY EASY TO USE
- AVAILABLE TO THE FARMER, CROP ADVISER, EDUCATOR
- NOT QUITE READY FOR USE YET IN WIS.
 - NEED CLIMATE, SOIL DATA
- HOPE TO BUILD P INDEX INTO RUSLE 2
- WILL BE THE PLANNING TOOL FOR THE FUTURE